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CALCULAS-II

1- Sequences.
A sequence is nothing more than a list of numbers written in a specific order.

General sequence terms are denoted as follows,

a, — first term

a, —second term

)
a —n" term

n

a . —(n+1)" term

There is a variety of ways of denoting a sequence. Each of the following are equivalent ways of
denoting a sequence.

{al"aE"'"’an’anH""} {an} {an}:zl

Example 1 Write down the first few terms of each of the following sequences.

(a) { ! t 1} [Solution]
n

n=I1

(—l -)n+1 - |
(b) 2—n [Solution]

n=0

(c) {b, _}; . where 5, =»n" digit of 7 [Solution]

n+l]”
(a){ 3 }n=l

To get the first few sequence terms here all we need to do is plug in values of » into the formula
given and we’ll get the sequence terms.
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.(_l)nﬁ-l 1%
ot
. n=0

This one 1s similar to the first one. The main difference is that this sequence doesn’t start at

n=1.

n=0

N
CO | =
—

cn|'—

aD

(c) {b,} _.where b, = n™ digit of 7

So we know that 7 =3.14159265359...

The sequence 1s then,
{31 4.1,5.9.2.6.5.3.5, .. }

Theorem 1

Given the sequence {a, } if we have a function f'(x) suchthat f(n)=a, and lim /' (x)=L

X—>

then lima, =L
n—r e

Theorem 2

If lim‘an‘ =0 then lma, =0.
n—0 n—0

Theorem 3

a
The sequence {#” converges if —1 <7 <1 and diverges for all other value of ». Also,
0 2 2
e

o {0 if —l<r<l
lm#" =

n—>

ifr=1
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Example 2 Determine if the following sequences converge or diverge. If the sequence
converges determine 1its limit.

- 3n? -1 B S
) — [Solution]
10n+5n"] |

(b) { } [Solution]

(©) { [Solution]
() { } [Solution]
Solution
@ 3’ —12 )
10n+5n~ |

To do a limit 1 this form all we need to do 1s factor from the numerator and denonmunator the
largest power of », cancel and then take the limit.

2 1 1
. 3nt -1 : " (3_;42} _ 3_”_2
lim - =lim m 211_131 0 =—
Lid o0 H—0 n o0
—»®]10n+5n ?’?2(—4-5) W.s
n n

So the sequence converges and its limit is 2.

E}ln

(b) 1 —

1

n=l1

Normally this would be a problem, but we’ve got Theorem 1 from above to help us out. Let’s
define

2x
e

f(x)=

¥

and note that,

In
f(n)=—

n
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Theorem 1 says that all we need to do 1s take the limit of the function.
¥4
e e 2e™

Iim — =lim—=hLm

n—w B X g x—»0 ]_

— ]

So. the sequence in this part diverges (to o).

_1 n o ©
© L
n -

We will need to use Theorem 2 on this problem. To this

~1Y
lim ( ) = li111l =0
H—*0 1 H—0 i

Therefore, since the limit of the sequence terms with absolute value bars on them goes to zero we

know by Theorem 2 that,

)
lim( ) =0

n—0 n

which also means that the sequence converges to a value of zero.
) ©
() { —1y'
( ) jir:O
For this theorem note that all we need to do is realize that this 1s the sequence in Theorem 3 above

using ¥ =—1. So, by Theorem 3 this sequence diverges.

Theorem 4
For the sequence {a, } if both li_%az” =L and ,111_13% a5,,, =L then {a,} is convergent and

lima =L.
H—»0

2- Terminology and Definitions.
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Let’s start off with some terminology and definitions.

Given any sequence {a”} we have the following.

1. We call the sequence increasing if a, <a,,, for every n.

n+l

2. We call the sequence decreasing if a, > a_, for every n.

3. If { a”} IS an Increasing sequence or { a”} 1s a decreasing sequence we call it monotonic.

4. If there exists a number i such that m < a, for every n we say the sequence 1s bounded
below. The number  is sometimes called a lower bound for the sequence.

h

If there exists a number M such that a, <M for every n we say the sequence is
bounded above. The number M is sometimes called an upper bound for the sequence.

6. If the sequence is both bounded below and bounded above we call the sequence
bounded.

Example 1 Determine if the following sequences are monotonic and/or bounded.

(a) {—nz }w_o [Solution]

(b) {(—1)”+l}w [Solution]
Jn=1
21" |
(c) {—2} [Solution]
n n=>3

Solution

(a) {—f?2}

oo

n=»0

This sequence 1s a decreasing sequence (and hence monotonic) because.,
2 132
—n">—(n+1)

for every n.

® (-1

j n=1
The sequence terms in this sequence alternate between 1 and -1 and so the sequence is neither an
mcreasing sequence or a decreasing sequence. Since the sequence is neither an increasing nor

decreasing sequence it is not a monotonic sequence.

The sequence is bounded however since it is bounded above by 1 and bounded below by -1.
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217
© H

This sequence 1s a decreasing sequence (and hence monotonic) since,
2 2

- > - @
2 2

n (n+l)

The terms in this sequence are all positive and so it is bounded below by zero. Also, since the

sequence 1s a decreasing sequence the first sequence term will be the largest and so we can see
that the sequence will also be bounded above by 5. Therefore, this sequence is bounded.

We can also take a quick limit and note that this sequence converges and its limit is zero.

Example 2 Determine 1if the following sequences are monotonic and/or bounded.

(a) { ! [Solution]

n+lj
3 = OO
_ [Solution]
n*+10000]
Solution
ao
n
(a) 1
n+l)

To determine the increasing/decreasing nature of this sequence we will need to resort to Calculus
I techniques. First consider the following function and its derivative.

iy
F= 1) =

We can see that the first derivative is always positive and so from Calculus I we know that the
function must then be an increasing function. So, how does this help us? Notice that,
n

f(”):m:‘?n

Therefore because n <n+1 and f(x) is increasing we can also say that,

n+l1
a = =f(n)< f(n+]l)=—=a = a <a
"+l =S ()< f( )= n+l+el 7 "

n+l

In other words, the sequence must be increasing.
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Note that now that we know the sequence is an increasing sequence we can get a better lower
bound for the sequence. Since the sequence 1s increasing the first term in the sequence must be

the smallest term and so since we are starting at # =1 we could also use a lower bound of 4 for

this sequence. If is important to remember that any number that is always less than or equal to all
the sequence terms can be a lower bound. Some are better than others however.

A quick limit will also tell us that this sequence converges with a limit of 1.
3 1"
n

n* +10000

(b)

n=[0

This however, 1sn’t a decreasing sequence. Let’s take a look at the first few terms to see this.

4 = — ~0.00009999 a4, =—1 ~0.0007987
10001 > " 1252

a,=—2 £ 0005678 a, =1 0006240
10081 641

4. =~ 0011756 a, =21 0019122

Y 14
343

a, =% 002766 4y =22 003632
12401 881

gy =2~ 0.04402 4, = =0.05
16561 20

Now, we can’t make another commeon mistake and assume that because the first few terms

increase then whole sequence must also increase. If we did that we would also be mistaken as
this is also not an increasing sequence.

This sequence is neither decreasing or increasing. The only sure way to see this is to do the
Calculus I approach to increasing/decreasing functions.

In this case we’ll need the following function and its derivative.
3 —x? (x* =30000)
, X AP
X)=—F—— X)= 5
() x* +10000 ) (x*+10000)

Thus function will have the following three critical points,
x=0, x=+/30000 ~13.1607, x=—-30000 ~—-13.1607
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Why critical points? Remember these are the only places where the function may change sign!
Our sequence starts at » =0 and so we can ignore the third one since it lies outside the values of
n that we’re considering. By plugging in some test values of x we can quickly determine that the

derivative is positive for 0 < x < /30000 ~13.16 and so the function is increasing in this range.

Likewise, we can see that the derivative is negative for x > +/30000 ~13.16 and so the function
will be decreasing in this range.

So, our sequence will be increasing for 0 <» <13 and decreasing for #» > 13 . Therefore the
function is not monotonic.

3- Series — The Basics.
That topic 1s infinite series. So just what 1s an infinite series? Well, let’s start with a sequence

[+ 4] p . . . . .
{an} , (note the » =1 1s for convenience, it can be anything) and define the following,
n=
51 =4
s, =a,+a,
S, =a,+a,+a,

S, =a+a, +day;+dy,

n
s =a,+a,+a,+a,+--+a :Zai
i=1

" . . o
The s are called partial sums and notice that they will form a sequence, {,s'”}”_l. Also recall

that the ¥ 1s used to represent this summation and called a variety of names. The most common
names are : series notation, summation notation, and sigma notation.
) 0.8}

We want to take a look at the limut of the sequence of partial sums. { Suf -

Notationally we’ll define,
n [+ 4]
lms, =lim » a. =» a.
H—0 " n—)ocg ! ; !

~ . - oo . . . . .
If the sequence of partial sums, {.s.'w}r1 , 1s convergent and its limit is finite then we also call the

oo

infinite series, Z a; convergent and if the sequence of partial sums is divergent then the infinite
=1

series 1s also called divergent.

Note that sometimes it is convenient to write the infinite series as,

a
Ya,=a+a,+ay+-+a,+
i=1
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So, we’ve determined the convergence of four series now. Two of the series converged and two
diverged. Let’s go back and examine the series terms for each of these. For each of the series
let’s take the limit as » goes to infinity of the series terms (not the partial sums!!).

limn = this series diverged
H—0

: 1 : :
llim——=0 this series converged
n—=o ps |

- ¢ n - - - -
lim(—1) doesn't exist this series diverged
H—X

Im—=0 this series converged
n—wo 377

Theorem

If > a, converges then lima, =0.
n—>L

Divergence Test
If lima, #0 then > a, will diverge.

H—0

Example -1 Determine if the following series is convergent or divergent.
5]
3 10 +2#°

n=0
That’s what we’ll do here.

11'111_'73 =——=0
=0 10+ 2n 2

The limit of the series terms 1sn’t zero and so by the Divergence Test the series diverges.

4- Type of Series.
A- Geometric Series.
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A geometric series 1s any series that can be written in the form,

@

-1
S ar
n=1

or, with an index shift the geometric series will often be written as,

@
Z ar”

n=0

These are identical series and will have identical values, provided they converge of course.

Recall that by multiplying S, by r and subtracting the result from S, one obtains

If we start with the first form it can be shown that the partial sums are,

[ n
a(l-r ) a ar”
5§ = — -

" 1—r I-r 1—r

The series will converge provided the partial sums form a convergent sequence, so let’s take the

limit of the partial sums.
n
. . a ar
lims, = lllll(— - —J

n—wo ol |-y 1—r

n

ar

) a .
=lim—-lim
H—>D 1 —y no® 1 —

a

a ..
=—————lmr”"
I—r 1—pn=

Now., from Theorem 3 from the Sequences section we know that the limit above will exist and be
finite provided —1 <7 <1. However, note that we can’t let 7 =1 since this will give division by
zero. Therefore, this will exist and be finite provided —1 < » < 1 and in this case the limit is zero
and so we get,

. a
lims =——
e

Theretore, a geometric series will converge if —1 < # <1, which is usually written M <1, 1ts

value 1s,

Example 1 Determine if the following series converge or diverge. If they converge give the
value of the series.
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(a) Z 9—”-1-24??4-1
n=1

n=0
Solution
(a) Z 9—H+24H+1
n=l

So, let’s first get rid of that.

o o0 o gntl
Z_] 9—H+24n+1 — Z_l 9—(?’?—2)4n+1 — Zl ;’n_z

Now let’s get the correct exponent on each of the numbers. This can be done using simple
exponent properties.

@ o 4n+1 oo 41}—142
9—n+24n+l —_ —
; ; 973—2 ; 9n—19—1

Now. rewrite the term a little.

@ o -1 © 4"
Z 9_”+24”+1 = Z 16 (9) 4”—1 - Z 144(i]
n=1 n=l ) " ’

So, this 1s a geometric series with a =144 and » = % < 1. Therefore, since M <1 we know the
series will converge and its value will be,
Iv'e) 14
Z 9—114—24??4—1 . 144 . 2(144) . 1296
n=l1 l o i 5 5
9

- _4 In
BPyenis

n=0 -~
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So, we’ve got it into the correct form and we can see that a =5 and » =— 6—;‘. Also note that
‘r‘ > 1 and so this series diverges.

Example 2 Use the results from the previous example to determine the value of the following
series.

(a) Z 9—n+24n+l

n=0

(b) Z 9—?2+24H+].

n=3

Solution

(a) Z 9—??+24?1'+1
n=0

Let’s notice that if we strip out the first term from this series we arrive at,

i 9—?‘I+24n+1 — 9241 + i 9—n+24h‘+1 =324+ i 9—h‘+24n+1

n=0 n=1 n=1

From the previous example we know the value of the new series that arises here and so the value
of the series in this example is,

1296 2916

> 9T =324 4 —
n=0 J 5

(b) Z 9—1r+24n+l
n=3

oo

Z 9—n+24n+l — 9142 + 9043 + Zg—n+24n+l — 208 +Zg—n+24n+l

n=1 n=3 n=3

We can now use the value of the series from the previous example to get the value of this series.

i 9—n+24n+1 — i 9—J}+24n+l _ 208 — 1296 _ 208 — @
Q

n=3 n=1 - »
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B- Power Series.
Fact ( The p —series Test)

= 1 : | : "
If £ >0 then Z—p converges if p >1 and diverges if p <1.
i 1

Using the p-series test makes it very easy to determine the convergence of some series.

Example 3 Determine if the following series are convergent or divergent.
a0 1

Solution
(a) In this case p =7 > 1 and so by this fact the series is convergent.

(b) For this series p =1 <1 and so the series is divergent by the fact.

In this section we are going fo start talking about power series. A power series about a, or just
power series, is any series that can be written in the form,

= ' .
e, (x—a)
n=0

The ¢,’s are often called the coefficients of the series.

First, as we will see in our examples, we will be able to show that there 1s a number R so that the
power series will converge for, ‘x - a‘ < R and will diverge for

xX— a‘ > R . This number 1s
called the radius of convergence for the series. Note that the series may or may not converge if
xX— a‘ = R . What happens at these points will not change the radius of convergence.

Secondly, the interval of all x’s, including the endpoints if need be, for which the power series
converges is called the interval of convergence of the series.

These two concepts are fairly closely tied together. If we know that the radius of convergence of
a power series 1s R then we have the following.

a—R<x<a+R power series converges

x<a—R and x>a+R power series diverges

The interval of convergence must then contain the interval ¢ — R < x < a + R since we know that

the power series will converge for these values.
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Before getting mnto some examples let’s take a quick look at the convergence of a power series for
the case of x = a . In this case the power series becomes,

icn(a—a)” zicn(O)n ZCO(O)OJrIZD:c"(O)n :cﬁJri:():co+0:co
n=0 n=0

n=1 n=1
and so the power series converges. Note that we had to strip out the first term since it was the
only non-zero term in the series.

Example 1 Determine the radius of convergence and interval of convergence for the following
power series.

ZLL) " (x+3)

Solution

With all that said, the best tests to use here are almost always the ratio or root test. Most of the
power series that we’ll be looking at are set up for one or the other. In this case we’ll use the
ratio test.

v+l n+l ‘

Il (-1) (n+ﬁ}rl)(x+3) _ 4" :
&= 1 (—1)" (m)(x+3)'|

—( 1)(x+3
. (n+1)(x+3)
n—o 4?’?

The limit 1s then.

. on+1
L= lim
e 4p

xX+3

_1

xX+3

So, the ratio test tells us that if L <1 the series will converge, if L >1 the series will diverge,
and if L =1 we don’t know what will happen. So, we have,

! :c+3‘<1 —
4

X+ 3‘ <4 series converges

! ;\'+3‘>1 =
4

X+ 3‘ >4 series diverges

radius of convergence for this power series 1s R =4 .

Now, let’s get the interval of convergence. We’ll get most (if not all) of the interval by solving
the first inequality from above.
4 <x+3<4

—T<x<l
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The way to determine convergence at these points is to simply plug them into the original power
series and see if the series converges or diverges using any test necessary.

x=-=7:
In this case the series is,
=(=1)'n, . &(=1)'n, .,
() =Y () A
; 4}1‘ ( ) ; 4}1‘ ( )
il n n n n \2n
=2 (=) (-1)n (=) (=1) =(-1)" =1
n=1
= Z n
n=1
This series 1s divergent by the Divergence Test since limn =0 # 0.
H—0
x=1:
In this case the series 1s.
= (-1Y'mn, ., =
SE Ty o3y
n=1 '_I' n=1
Thus series 1s also divergent by the Divergence Test since lim(—'l)” n doesn’t exist.

n—»x

So, 1n this case the power series will not converge for either endpoint. The interval of
convergence 1s then,

—7T<x<l1
Example 2 Determine the radius of convergence and interval of convergence for the following
power series.

> 2 (ax-s)

n=l N

Solution
Let’s jump right into the ratio test.

27 (4x—8)""
L=1lm ( ) , 7
e n+l 2" (4x-8)

n

2n(4x -8
el 4]

. 2n
lim——
n% 4]

4x—8§

4x —8

=2

So we will get the following convergence/divergence information from this.
2 ‘4,\‘— 8| <l series converges

2 ‘4,\*— 8| > 1 series diverges
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We need to be careful here in determining the interval of convergence. The interval of

convergence requires ‘x — a‘ <Rand |x— a‘ > R . In other words, we need to factor a 4 out of the

absolute value bars in order to get the correct radius of convergence. Doing this gives,

8

xX— 2‘ <1 = ‘x — 2‘ < é series converges

8

1 L
xX— 2‘ >1 = ‘x — 2‘ > 3 series diverges
So, the radius of convergence for this power series is R = 1.

Now, let’s find the interval of convergence. Again, we’ll first solve the inequality that gives
convergence above.

1 1
——<x-2<—
15 17
—<x<—
Now check the endpoints.
15
X=—:
8
The series here 1s,
w 211 15 n o AN l n
e e R b
= o\ 2 il 7} 2

This 1s the alternating harmonic series and we know that 1t converges.

_17.
-

The series here i1s,

X

20520

n=l1 n n=1 n
® i 1
n=1 1 ZH
o
n=1 1
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The interval of convergence for this power series is

3 %
Example 3 Determine the radius of convergence and interval of convergence for the following
pOWer series.

w0

> nl(2x+1)

n=0
Solution
We’ll start this example with the ratio test as we have for the previous ones.
) wh+l
(m+1)!(2x+1)

L =lim .
el pl(2x+1)

lim (n+1)n!(2x+1)

n—»0 M l

=|2x+1

lim(n+1)

n—

At this point we need to be careful. The limit is infinite, but there is that term with the x’s in front
of the limit. We’ll have L = >1 provided x # —1.

Example 4 Determine the radius of convergence and interval of convergence for the following
power series.
n
ol
n
n=1 n
Solution

In this example the root test seems more appropriate. So,
1

(x—6)'["

M

L=Ilm

n—0 n

. |x—6
=lim
0 "

o1
= lim —
H—0 n

x—06

=0

So, since L =0 <1 regardless of the value of x this power series will converge for every x.

In these cases we say that the radius of convergence is R =« and interval of convergence is
—o0 < X < o0,
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C- Alternating Series.
alternating series is any series, Z a, . for which the series terms can be written in one of the

following two forms.

There are many other ways to deal with the alternating sign, but they can all be written as one of
the two forms above. For mstance,
\ 2 .
(=1 (1) = (1)

(_1)n+2
(_l)n—l _ (_.l-)nﬂ (_1-)—2 _ (_l)nﬂ

Alternating Series Test

Suppose that we have a series » a, and either a, =(—1)"5, or a, =( —1)HH b, where b_>0

for all n. Then if,

1. Imb =0 and,
n—0

2. {bn} is a decreasing sequence

the series Z a, 1s convergent.

Example 1 Determine if the following series 1s convergent or divergent.
n+l

&)

n=1 n
Solution
First, identify the b, for the test.
® (] n+l © 1 1
Lyl
SEL Syl 5, =1
- N — n n
Now, all that we need to do is run through the two conditions in the test.
lmb =lim—=0
n—»0 =0 17
1 |
]')n :_>—:bn+l
n n+l

Both conditions are met and so by the Alternating Series Test the series must converge.
The series from the previous example is sometimes called the Alternating Harmonic Series.

/ n+l T\ . . . . .
Also, the (—1) ™ could be (—l) or any other form of alternating sign and we’d still call it an

Alternating Harmonic Series.
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Example 2 Determine if the following series is convergent or divergent.

Z(

— n’ +5
Solution
First, identify the b, f01‘ the test.
SOUP Sy L
~ n° +5 —~ 5 "t 45
Let’s check the conditions.
2
n

=1+0

limb, = lim
n—»wo n— n + -)

So, the divergence test requires us to compute the following limit.

- n 2
. (=1 m
lim 5
e T+ 5

This limit can be somewhat tricky to evaluate. For a second let’s consider the following,

. -1 " ?’?2 . . . ;?2
11111% = (hm (1) )( lim —
= pBc 4+ 5 =300 n—=w - 45

'_ n 2 2
lim&:lim{(—l)n 1 }

So, let’s start with,

n=x 7+ 5 n—»0 ”2 +5

Now, the second part of this clearly is going to 1 as #» — oo while the first part just alternates
between 1 and -1. So, as n — oo the terms are alternating between positive and negative values
that are getting closer and closer to 1 and -1 respectively.

In order for limits to exist we know that the terms need to settle down to a single number and
since these clearly don’t this limit doesn’t exist and so by the Divergence Test this series

diverges.

Example 3 Determine 1if the following series 1s convergent or divergent.

&

o n+4
Solution

- 103 -



CALCULAS-II

H
n+4
so let’s check the conditions.
The first 1s easy enough to check.
. . AIn
limb, = lim =0
H—» H—» n _|_ ,_1

Let’s start with the following function and its derivative.
P VX PR 4—x
f(x)= S
(x)="= (x)

2/x (x+4)

Now, there are three critical points for this function, x =—4, x =0, and x =4 . The firstis
outside the bound of our series so we won’t need to worry about that one. Using the test points,

Fi1)=2 5= 3

= f'(5)=———

50 810

and so we can see that the function in increasing on 0 < x <4 and decreasing on x >4 .
Therefore, since f (n) = b we know as well that the b, are also increasing on 0 <7 <4 and

decreasing on n >4 .

The b, are then eventually decreasing and so the second condition is met.

Both conditions are met and so by the Alternating Series Test the series must be converging.
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Example 4 Determine if the following series is convergent or divergent.

cc-s{mr

Pl

jl—r}

Solution

The point of this problem is really just to acknowledge that it is in fact an alternating series. To
see this we need to acknowledge that,

W1
cos(nz)=(-1)
and so the series 1s really,

= cos(nzt) = (-1) 1

:Z \f = b”:ﬁ

n=2 '\/; n=2 n

Checking the two condition gives,

limb = 11111 =0

n—m0 " n—x f

The two conditions of the test are met and so by the Alternating Series Test the series is
convergent.

5- Comparison Test .

Comparison Test

Suppose that we have two series Zan and an with a,.b, >0 forallnand a, <b_ forall n.
Then,
1. If Z b, is convergent then so is Z a,.

2. If Z a, 1s divergent then so 1s Zb” :

consider the following series.

= 1
23 n

n=0 -
1 1
en 3
Now,
1
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<1 the series will converge and its value

: : . . |
1s a geometric series and we know that since ‘I‘ = ‘—

will be,

Now. if we go back to our original series and wri‘re down the partial sums we get,

Since all the terms are positive adding a new term will only make the number larger and so the
sequence of partial sums must be an increasing sequence.

n l n+l l

Sr.' = Z < Z i . :‘S‘n+l

i . i
=3+ o3+

%’+3

Then since,
1 |
S
3"+n 3
and because the terms in these two sequences are positive we can also say that,

=Y <Y Z = <

}0%—'_? JO

So, the sequence of partial sums of our series is a convergent sequence. This means that the
series itself,

i 1
=3 +n

1s also convergent.

Example 1 Determine if the following series 1s convergent or divergent.

el

n
2T

‘S n —cos” (n)

Solution
Since the cosine term in the denominator doesn’t get too large we can assume that the series
terms will behave like,

Therefore.

n n 1

f?z—ees‘g(n) n-n

- 106 -



CALCULAS-II

; n
diverges (it’s harmonic or the p-series test) by the Comparison Test our original series must also
diverge.
Example 2 Determine if the following series converges or diverges.

ac

Z n? 42
= nt 453
Solution

In this case the “+2” and the “+5” don’t really add anything to the series and so the series terms
should behave pretty much like

As shown. we can write the series as a sum of two series and both of these series are convergent
by the p-series test. Therefore, since each of these series are convergent we know that the sum,
® n’+2

2

n=1 n

is also a convergent series. Recall that the sum of two convergent series will also be convergent.

Now, since the terms of this series are larger than the terms of the original series we know that the
original series must also be convergent by the Comparison Test.

6- Absolute Convergence.
First, let’s go back over the definition of absolute convergence.

Definition

A series Z a, 1s called absolutely convergent if Z

a,| 1s convergent. If Z a, 1s convergent

and Z ‘a”‘ 1s divergent we call the series conditionally convergent.

We also have the following fact about absolute convergence.

Fact

If Z a, 1s absolutely convergent then it is also convergent.
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Example 1 Determine if each of the following series are absolute convergent, conditionally
convergent or divergent.

(a) z

n=l1

(b) Z

L S M
(€) > ——
= n

)n+2

Solution
oo _1 ).F}
@3>

This 1s the alternating harmonic series and we saw 1n the last section that it is a convergent series
so we don’t need to check that here. So, let’s see if it is an absolutely convergent series. To do
this we’ll need to check the convergence of.

@ .'?’I

“ 1
2 -2

that 1t 1s divergent.

Therefore, this series is not absolutely convergent. It is however conditionally convergent since
the series itself does converge.

®) Z( )"

In this case let’s just check absolute convergence first since if it’s absolutely convergent we won’t
need to bother checking convergence as we will get that for free.

® (_l)n+2 - © L
; I?Z _é nz

This series is convergent by the p-series test and so the series is absolute convergent. Note that
this does say as well that it’s a convergent series.

L osimn
© > —
n=l1 n
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i sinm| <« ‘sinn‘
3 :Z
a=1 M

3
n=l N

To do this we’ll need to note that

—1<smn<l — ‘sinn‘il
and so we have,
‘sin n| 1
3 =73
n n
Now we know that
>-
3
n=1 n
converges by the p-series test and so by the Comparison Test we also know that
i ‘sin n‘
3
n=1 H

converges.

Theretfore the original series is absolutely convergent (and hence convergent).

7- Ratio Test.
Ratio Test
Suppose we have the series Z a, . Define,

. la
L =lim |22
0 a
n

Then,
1. if L <1 the series is absolutely convergent (and hence convergent).
2. if L >1 the series is divergent.
3. if L =1 the series may be divergent, conditionally convergent, or absolutely convergent.

Example 1 Determine if the following series 1s convergent or divergent.
e
A4 (n+1)

Solution

With this first example let’s be a little careful and make sure that we have everything down
correctly. Here are the series terms a,.

(-10)

a =——2>
Togrm (n+1)
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Recall that to compute a,+; all that we need to do 1s substitute »+/ for all the »’s 1 a,.
(_10)ir+l (_10)n+l
a = ¥ P = el ;.
n+l 4_(rz+l}+l ((?’I+l)+l) 4_n+3(n+2)

Now. to define I we will use,

L =lm

n—»a0

a

n

an+1 ’

since this will be a little easier when dealing with fractions as we’ve got here. So,

i (—10)"" 47 (n+1)
H—>0 42n+3 (?’? + 2) (_10)1; ‘

—10(n+1
:lim#)
oo 4% (n+2)
10 n+1

=—lm
16m=>2p+2

So, L <1 and so by the Ratio Test the series converges absolutely and hence will converge.
Example 2 Determine if the following series is convergent or divergent.

2 n!

n=0 SH

Solution
Now that we’ve worked one in detail we won’t go into quite the detail with the rest of these.
Here is the limit.

. +)157 o (n+1)!
L=1lm (7+1) — :11111(”_ )
ool ST gl s 5 gl
-~ (n+1)n!
L =1lm
e 5 p!

at which point we can cancel the »! for the numerator an denominator to get,

. (n+1) _
L=lm—=w>1

n—»0 5

So, by the Ratio Test this series diverges.
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Example 3 Determine if the following series 1s convergent or divergent.
o0 2

Z(2411'—1)!

n=2

Solution
In this case be careful i dealing with the factorals.

, .2 LY
L =lm (n+.l_) (2 1)‘
n— (2(;7+1}—1)! n’ ‘

a2 EERY
tim (n+1)" (2m : l)‘
—e(2n+1)! n” ‘

L2 . .o
=lim (n+1) (2n—1)
o (2n+1)(2n)(2n-1)!  n’
\2

= lim (n+1) :
= (2n+1)(2n)(n’)
=0<l1

So, by the Ratio Test this sertes converges absolutely and so converges.
Example 4 Determine if the following series is convergent or divergent.
[+ ] 9”
¢ n+l
n=1 (_2) n
Solution

Do not mistake this for a geometric series. The # in the denominator means that this isn’t a
geometric series. So, let’s compute the limit.

ntl _2-n+]
L=lml}- 32, ( )n n‘
o2y (nel) 9
) 9n
=lmm|l————
el (=2)(n+1)
9 . n
=—lim——
2o p 4]
:2>1

Therefore, by the Ratio Test this series is divergent.
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Example 5 Determine if the following series is convergent or divergent.

i(—l)
~n’+1
Solution
Let’s first get L.
Jyntl 5 5
L=lm ( 1)2 J’? +3 =lim- 7 J:l =1
mel(n+1) 41 (=1) | " (n+1) +1

So, as implied earlier we get L =1 which means the ratio test is no good for determining the

convergence of this series. We will need to resort to another test for this series. This series is an

alternating series and so let’s check the two conditions from that test.

limbp, =lim 5 =0

n—»w n—x _|_1
b = 31 — > - lj =b
n~+l  (n+1) +1

The two conditions are met and so by the Alternating Series Test this series 1s convergent. We’ll

leave it to you to verify this series is also absolutely convergent.
Example 6 Determine if the following series is convergent or divergent.

i n+2
= 2n+7
Solution
Here’s the limit.
_ 3 C (n+3)(2n+7
L:hm‘ nT 2H+7‘:hm(n )( i ):l

=2 2(n+1)+7 n+2| = (2n+9)(n+2)

Again, the ratio test tells us nothing here. We can however, quickly use the divergence test on

this. In fact that probably should have been our first choice on this one anyway.

. n+2 1
lim =—=0
oo 247 2

By the Divergence Test this series is divergent.

8- Root Test.
Root Test

Suppose that we have the series Za” . Define,
L=lmz an‘ = lim‘a”
n—x n—w
Then,

4. 1f L <1 the series is absolutely convergent (and hence convergent).
if L >1 the series is divergent.
if L =1 the series may be divergent, conditionally convergent, or absolutely convergent.

n

SR
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Fact

1

limn” =1
H— D

Example 1 Determine if the following series is convergent or divergent.
14+2n
n=L 3
Solution

There really isn’t much to these problems other than computing the limit and then using the root
test. Here 1s the limit for this problem.

n . n o0
=lim =—
H—riC _+2

Qrz

n

= lim |—— —w>1

n—x

%12,

So, by the Root Test this series is divergent.

Example 2 Determine if the following series is convergent or divergent.

n

i Sn—3n’
—~\ T’ +2
Solution | _
Again, there 1sn’t too much to this series.
1
I
: sn=3n’ )" .. |5n=3n°
L=lm|| —5—— =lm|—=|—
ol Tt + 2 s T’ 42

Therefore, by the Root Test this series converges absolutely and hence converges.

Example 3 Determine if the following series 1s convergent or divergent.

i (-12)
n=3 n
Solution
Here’s the limit for this series.
1
C(=12)) 12 12
L:hlll( ) —11111—:—:12>1
n—0 1 n—0 ; 1
n

After using the fact from above we can see that the Root Test tells us that this series 1s divergent.

-113 -



CALCULAS-II

9- Taylor Series.

So, for the time being, let’s make two assumptions. First, let’s assume that the function f (x)
does 1n fact have a power series representation about x =a .

f(x)=>¢ (x—a) =cy+¢(x—a)+c, (x—a) +ey(x—a) +c,(x—a) +--
n=0
Next, we will need to assume that the function, [ (\) , has derivatives of every order and that we
can m fact find them all.

Now that we’ve assumed that a power series representation exists we need to determine what the

coefficients, ¢,, are. This is easier than it might at first appear to be. Let’s first just evaluate
everything atx = a . This gives,

fla)=

However, if we take the derivative of the function (and its power series) then
plugin x =a we get,

f(x)=¢ +26‘2(x—a)+303(x—a)2 +4c4(x_a)3 L
f’(a'):cl

and we now know c;.

Let’s continue with this idea and find the second derivative.
" f 2
f(""):202+3(2)3( )+4 )04(1‘_ ) +o
f"(a)=2c,

So. it looks like,

Using the third derivative gives.
S (x)=3(2)e; +4(3)(2) ey (x—a)+--
/"(a)=3(2)e, B )

Using the fourth derivative gives,

79 (x)=4(3)(2) e, +5(4)(3)(2)es (x—a) -
1(a)=4(3)(2)e, S b C)]
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Hopefully by this time you’ve seen the pattern here. It looks like, in general, we’ve got the
following formula for the coefficients.

£ (a)

n!

o=

This even works for n=0 if you recall that 01=1 and define £ (x)= f(x).

So, provided a power series representation for the function 7 (\) about x = a exists the Taylor
Series for f (x) about x =ais,

Taylor Series

f"(a)
31

If we use a =0, so we are talking about the Tavlor Series about x =0 , we call the series a
Maclaurin Series for f (\) or,

2

f(a)+f"(a)(x—a)+%f)(x—a)h +

(x—a) +-

Maclaurin Series

f(0)+f'(0)x+fé(!0)a‘2+f-3(10)x3+“_

To determine a condition that must be true in order for a Taylor series to exist for a function let’s
first define the n™ degree Taylor polynomial of f(x) as,

n )¢ _
S a) () (x—a)

T,(x)=2
Notice as well that for the full Taylor Series,

-0 1!
o pln) g o
>T ) ay
o n!

Next, the remainder 1s defined to be,

R (x)=f(x)-T, (x)

So. the remainder is really just the error between the function f'(x) and the n® degree Taylor
polynomial for a given ».

With this definition note that we can then write the function as,

[(x)=T,(x)+R,(x)
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Theorem

Suppose that f(x)=T,(x)+R (x). Thenif,
llmR (x)=0

H—0

for

X — a‘ < R then,

on

x—a‘c:R.

Example 1 Find the Taylor Series for f(x)=e" about x=0.

Solution
To get a formula for f ") (0) all we need to do 1s recognize that,

f(n](l')zex n=0.12.3,...
and so.
F(0)=e" =1 n=0.1.2.3....

Therefore, the Taylor series for f'(x)=e” about x=01s,

Example 2 Find the Taylor Series for f(x)=e" about x=0.

Solution
Solution 1

As with the first example we’ll need to get a formula for 7 (0). However, unlike the first one

we’ve got a little more work to do. Let’s first take some derivatives and evaluate them at x=0.

S (x)=e” 77(0)=1
f”]( )=—e* fm(())z—l
= 0=
f”"( )=—e fm(()):—l

Fx)=(D)"e f0)=(-1) n=0.1.2.3
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So, 1n this case we’ve got general formulas so all we need to do is plug these into the Taylor
Series formula and be done with the problem.

-y

— nT

rr .??

Solution 2
So, all we need to do is replace the x in the Taylor Series that we found in the first example with
.

n=0 n=0 n. !

This is a much shorter method of arriving at the same answer so don’t forget about using
previously computed series where possible (and allowed of course).

) 2
Example 3 Find the Taylor Series for f(x)= x*e™ about x=0.

Solution

For this example we will take advantage of the fact that we already have a Taylor Series for e*

about x = 0. In this example, unlike the previous example, doing this directly would be
significantly longer and more difficult.

: (— ‘)”
4 -3x2 :\42
n=0
:\4i ) \23;
— n!
. 3)”\"n+4

oo
=0
To this point we’ve only looked at Taylor Series about x =0 (also known as Maclaurin Series)

so let’s take a look at a Taylor Series that isn’t about x =0.
Example 4 Find the Taylor Series for f(x)=e™" about x =—4.

Solution
Finding a general formula for £ (—4) is fairly simple.

70 (5)= (1) 7O (4) = (1)’ ¢
The Taylor Series 1s then,

0 _1 no4 i
e = (=D e (x+4)

n=>0 n!
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Example 5 Find the Taylor Series for f(x)=cos(x) about x=0.

Solution

First we’ll need to take some derivatives of the function and evaluate them at x=0.
f(x)=cosx F2(0)=1
Y (x)=—sinx Y(0)=0
P (x)=—cosx F20)=-1
Y (x)=sinx (0)=0
F¥(x)=cosa fA0)=1
fP(x)=—sinx F2(0)=0
F19(x)=—cosx F90)=-1

® (”]'O
cosx:Z—f ( )x”

= n!
i 0 ] " 0 (4) 0 (3) 0
‘ ) 2! 3! 41 51
1
=1 +0-—x"+0+—x"+0-——x"+
—~ - — 417 = ¢
n=0 n=l “—— n=3 ‘“—— n=5 ——
n=2 n=4 n=6
1 5, 1 1
2 4 6
cosx=1 —x"+—x ——x +
— 21" "4 6l
H= —_ e — [ —
n= n=2 n=3
cosx= 1 —i,\2+ix4_ix5+
- 21 41 6!
= SaT o G

By renumbering the terms as we did we can actually come up with a general formula for the
Tavlor Series and here it 1s,

(1)
=0 lZF’?)'

COS X =
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Example 6 Find the Taylor Series for f(x)=sin(x) about x=0.

Solution
As with the last example we’ll start off in the same manner.
% (x)=sinx F90)=0
Y (x)=cosx Y(0)=1
P (x)=—sina 2(0)=0
¥ (x)=—cosa P0)=-1
9 (x)=sinx 90)=0
7 (x)=cosx 90)=1
1 (x)=—sinx F(0)=0
So, we get a similar pattern for this one. Let’s plug the numbers into the Taylor Series.
x5O
SN X = X
; n!
1 1.5 1.5 1,

=—X——X +—X ——X +
3! 5! 7!

So renumbering the terms as we did 11 the previous example we get the following Taylor Series.

. o o (_1)” IE?H—]
inx= (2n+1)!

=0

We really need to work another example or two in which f (\) isn’t about x =0 .

Example 7 Find the Taylor Series for f(x)=1In(x) about x =2.

Solution
Here are the first few derivatives and the evaluations.
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7 () =la(x) 7(2)=1n2

70 ()= 70(2)=3

72 (%)= (@)=

)= )%

7= 2] 7(2)=-22

g 2oy 2000
7o) - EL gy GO

In order to plug this into the Tavlor Series formula we’ll need to strip out the # =0 term first.

w £y
n(x) -3 Loy

- nl
- 3)) 2
=@l P2y
n=1
n+1
= (-1) (n—1)!
= In( _
n( +”Z:; T (x )
( )n+1
=1 —2
11 ,,Z:‘ n2" (x

. . . 1
Example 8 Find the Taylor Series for f (x)=— about x =—1.
v

Solution
Again, here are the derivatives and evaluations.
(x)=- (D=5
2 2
fY(x)=-= fA(-1)=——5=2
(x) == D=
791 = 20 =201 a3)
. (1)
3 2(3)(4 (3 2(3)(4 g
79 ()=~ 200 (1) :_1‘)5):2(3)(4)
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f‘”’(.x-):M f‘”?’(—'l):Lﬁil)!#nH)!

A‘?‘H’z ( N 1 )

Here 1s the Taylor Series for this function.

L&),
=Y (x+]
x? ; n! (x )
> (n+1)! .
S G T
n=0 ”!
=3 (1) (x+1)

=

n=

Example 9 Find the Taylor Series for f(x)= x> —10x" + 6 about x =3.

Solution
Here are the derivatives for this problem.

F9(x)=x"-10x" +6 F9(3)=-57

Y (x)=3x" - 20x Y (3)=-33

7% (x)=6x-20 Y(3)==

s (x)=6 77 (3)=6
F(x)=0 fY(3)=0 n=4

This Taylor series will terminate after » = 3. This will always happen when we are finding the
Taylor Series of a polynomial. Here is the Taylor Series for this one.

3102 . "3 \7
x* —10x +6:§ / ”!( )(,\.,3)
:f(3)+f’(3)(x—3)+‘fé(!3)(3'—3)2+f;]3)(a—3)3+0

=—57-33(x-3)—(x-3)" +(x-3)
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Problems Sheet No.5
10- Problems.

A- Sequences.
For problems 1 & 2 list the first 5 terms of the sequence.

1. {i}w
n—=7J .

amel )%
(-1)
2n+(-3)"

1=2

For problems 3 — 6 determine if the given sequence converges or diverges. If it converges what is
its limit?

| P =Tn+3 1"
34—
1410 —4n- s

(_1 )Jrfl ”2

4.
4+n

n=0

{ ein }x
’ 2n
3 —e n=1

. {]n(nJrZ) F
In(1+4n) 1

u =]

n

For each of the following problems determine if the sequence is increasing, decreasing, not
monotonic, bounded below, bounded above and/or bounded.

[

4
—,
L]
|
=
[
ﬁ 8
=)
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Problems Sheet No.5
B- Series.

For problems 1 & 2 compute the first 3 terms in the sequence of partial sums for the given series.

1. n2"
=1

R

2 2n

2.

mn+2

w
For problems 3 & 4 assume that the »™ term in the sequence of partial sums for the series ZG”
n=0

fe o}

1s given below. Determine if the series Z a, 1s convergent or divergent. If the series is
n=0

convergent determune the value of the series.

5+8n°
5§ =
" 2n=Tn"

55}

n

4.5, =—
54+ 2n

For problems 5 & 6 show that the series 1s divergent.

n

ne

%]

.3
n=0

nt +1
¢ i6+8n+9n2
' 3+ 2n+n’

n=>3

For each of the following series determine if the series converges or diverges. If the series
converges give its value.

L. i 37 i

[

tad
¢
—_—

|
O?JO'\
T |—=

5

n=1

n+7n+12
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Problems Sheet No.5
C- Comparison Test.

For each of the following series determine 1f the series converges or diverges.

o

BYE

n=l

PJ
L
__.--l-.

=

+

—
 —

L

= n-1
| ;1}'1’? +1
= 2n+7

6y

= n'sin’(n)

D- Absolute Convergence.

For each of the following series determine if they are absolutely convergent, conditionally
convergent or divergent.

'_1)n+1

—
[

—
)

)
Mg
—
—
=
(V5]
—_
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Sheet No.5

E- Ratio Test.

For each of the following series determine if the series converges or diverges.

[}

'S

F-

Root Test.

For each of the following series determine 1f the series converges or diverges.

2 ( 3n+1 "
1.
;(4—2?’?J

G- Power Series.

For each of the following power series determine the interval and radius of convergence.

1

(¥ ]

G T e— 4,\’712 i
= (—3) (J?‘Jrl)( )

2n+l

= n n
Z 43.-) (2'\+17)

n=0

: i&(,\'—2)n

Z(2n+1)!

o 41+2n

2 o (x+3)

n=0 -~

o n

2

n=0 M

(4x—1)"
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Problems Sheet No.5

H- Taylor Series.

For problems 1 & 2 use one of the Taylor Series derived in the notes to determine the Taylor
Series for the given function.

1. f(x)=cos(4x) about x=0

143
2. f(x)=x""" about x=0
For problem 3 — 6 find the Taylor Series for each of the following functions.

3. f(x)=e™" about x =4

4. f(x)=In(3+4x) about x=0

5. f(1n):\—74 about x =—3
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