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Course Description

The course named " Strength of Materials' or "*Mechanics of
Materials' deals with, Concept of stress, Stresses and strains, Axial
loading and axial deformation, Hook’s law, Statically indeterminate
members, Stresses due to temperature, Torsion, Internal forces in
beams, pure bending or Beam theory, Transverse loading and shear
stresses in beams, beam deflection, Transformation of stresses and
strains,. Principal stresses and strains, in addition to Axially

compressed members and buckling of columns.
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TOPICS

1.concept of stress
2.Concept of Strain
3.Statically indeterminate problems
4.Thermal stresses
5.Stresses in thin wall vessels, Poison's ratio
6.Beams, shear force and bending moment equations.
7.Shear force and bending moment Diagrams
8.Stresses in Beams, Bending stresses
9.Shear stresses in Beams

10.Deflection of Beams

11. Torsion

12. Buckling of Columns

13. Stress Transformation and Mohr's Circle

14. Problems on Mohr's Circle
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CHAPTER 1

Stress

Concept of Stress : Let us introduce the concept of stress, as we know that the main
problem of engineering mechanics of material is the investigation of the internal
resistance of the body, i.e. the nature of forces set up within a body to balance the
effect of the externally applied forces.

The externally applied forces are termed as loads. These externally applied forces
may be due to any one or more of the followings:

(i) due to service conditions

(ii) due to environment in which the component works

(iii) through contact with other members

(iv) due to fluid pressures

(v) due to gravity or inertia forces (Self weight of the structure).

As we know that in mechanics of deformable
solids, externally applied forces acts on a body and P(or F)
body suffers a deformation. From equilibrium point N
of view, this action should be opposed or reacted by
internal forces which are set up within the particles of
material due to cohesion. These internal forces give
rise to a concept of stress. Therefore, let us define a ;
term stress: EXorF)

Stress:

Let us consider a rectangular bar of some
cross—sectional area and subjected to some load
or force (in Newton ). |

Let us imagine that the same rectangular | €— —>
bar is assumed to be cut into two halves at | P ‘
section XX. Each portion of this rectangular bar .
is in equilibrium under the action of load P and | X

the internal forces acting at the section XX has
been shown.
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Simple Stress

Simple stress is expressed as the ratio of the applied force divided by the resisting
area or :

6 = Force / Area.

It is the expression of force per unit area to structural members that are subjected to
external forces and/or induced forces. Here we are using an assumption that the total
force or total load carried by the bar is uniformly distributed over its cross_section.

Units :

The basic units of stress in S.I units i.e. (International System) are N / m? (or Pa,
Pascal)

MPa=10°Pa , GPa=10°Pa , KPa=10%Pa

Sometimes N/mm? units are also used, because this is an equivalent to MPa ,
while US customary unit is pound per square inch , psi. (Ib/in?).

Simple stress can be classified as normal stress, shear stress, and bearing stress.
Normal stress develops when a force is applied perpendicular to the cross-sectional
area of the material. If the force is going to pull the material, the stress is said to be
tensile stress and compressive stress develops when the material is being
compressed by two opposing forces.

Shear stress is developed if the applied force is Forces
parallel to the resisting area. Example is the

bolt that holds the tension rod in its anchor. V
Another condition of shearing is when we twist
a bar along its longitudinal axis. This type of OBJECT
shearing is called torsion and covered in I

Chapter 3. \__%j"—__

Another type of simple stress is the bearing Bearing stresses at
stress, it is the contact pressure between two the contact surface
bodies. (Itis in fact a compressive stress ).

Suspension bridges are good example of structures that carry these stresses. The
weight of the vehicle is carried by the bridge deck and passes the force to the stringers
(vertical cables), which in turn, supported by the main suspension cables. The
suspension cables then transferred the force into bridge towers. 6
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Normal Stress

The resisting area is perpendicular to the applied force, thus normal. There are two
types of normal stresses; tensile stress and compressive stress. Tensile stress applied
to bar tends the bar to elongate while compressive stress tend to shorten the bar.

B e
¢ = Force / Area
P p
=P/ A
Bar in Tension Bar in Compression

where P is the applied normal load in Newton and A is the area in mm? The
maximum stress in tension or compression occurs over a section normal to the load.

EXAMPLE PROBLEMS IN NORMAL STRESS

Example 101: A hollow steel tube with an inside diameter of 100 mm must carry a
tensile load of 400 kN. Determine the outside diameter of the tube if the stress is
limited to 120 MN/m?.

Solution 101:

FP=gad T
where: 100 D
F =400 kN = 400 000 I \

o =120 MPa
A= +nD?- L=(1009)
= Lm(D* - 10 000)

thus, ¢ P =400 kN
400 000 = 120[ + =(I* — 10 0007]
400 000 = 30xD? — 300 000
D= 400 000+ 200 000w
30m
D =119.35 mm
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Example 102 A homogeneous 800 kg bar AB is supported at either end by a cable as
shown in Fig. P-105. Calculate the smallest area of each cable if the stress is not to

exceed 90 MPa in bronze and 120 MPa in

Solution:
pl:-

steel.

b,

1

Em 5m

W= BEIEIi: TELE N

By symmetry:

PE'J'=P.*T= %':?848]

= 3024 M

For bronze cable:

Py = Gl

3924 = 90A

Ap = 43.6 nun®
For steel cable:

P;: = Ogiddat

3024 =1204,,

Ag = 32.7 mm?

i I

Sreeal
L=3m

gl

10m

Example 103 An aluminum rod is rigidly attached between a steel rod and a bronze
rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the
maximum value of P that will not exceed a stress in steel of 140 MPa, in aluminum of

90 MPa, or in bronze of 100 MPa.

Solution:

For bronze:
T A = 2P
100(200) = 2F
F=100001

St Auminum  gronze
; IE 4P P

[TTIITTTI |||||||||]|

P
-2p

For alumdnism:
La ] ﬂm' =F
40 =F
F=300001
For Steel:

Tt Aes = 5P
F=14 000N

5P
Megative (-} means compression

Forsafe P, use F=10000 N =10 kN

Alurninum

A = 400 mm*

| Seeel & = 200 mm*

A = 500 mm? J'(

¥ -
) P

Bronze

=7

4p ‘

2Em

—
2P

20m  15m
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Example 104 A 12-inches square steel bearing plate lies between an 8-inches
diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the
maximum value of the load P if the stress in wood is limited to 1800 psi and that in
concrete to 650 psi.

Figure P-110

Shearing Stress
Forces parallel to the area resisting the force cause shearing stress. It differs to tensile
and compressive stresses, which are caused by forces perpendicular to the area on
which they act. Shearing stress is also known as tangential stress.

V

™= 2

where V is the resultant shearing force which passes through the centroid of the area
A being sheared.

p A p
LLHELIALISILITE S, R A
113 M ILIIAIIILILEIPY,
Single Shear
( ll/’ ;
pd 1
( 174
PN P
p € LA LSS L E IS ,%
; L

Double Shear @
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SOLVED EXAMPLES IN SHEARING STRESS

Example 105 : What force is required to punch a 20-mm-diameter hole in a plate that

is 25 mm thick? The shear strength is 350 MN/m?.

Solution:
P The resisting area is the shaded area
Puncher along the perimeter and the shear force
20 mm & V is equal to the punching force P.
25 mm thick V=14
P = 350[n(20)(25)]
=5407787 N
Punched outl_\ _l. =549.8 kN
25 mm
—ol T
20

Example 106 Find the smallest diameter bolt that can be used in the clevis shown in
Fig. 1-11b if P = 400 kN. The shearing strength of the bolt is 300 MPa.

Solution :
The bolt is subject to double shear|
V=14
—>  400(1000) = 300[2(+ nd)]
i P 4=2913mm
Figure 1-11b
40 kN
Example 107 Compute the shearing stress in the pin A 35¢
at B for the member supported as shown in Fig. The |
pin diameter is 20 mm. S
§ Pin atB
VBpN $,C
v\
250 mm

Figura P-119

a9




UNIVERSITY OF ANBAR %
COLLEGE OF ENGINEERING

DAM & WATER RESOURCES Ol .5 m
~ UNIVERSITY OF ANBAR
STREMGTH OF MATERIALS
Solution :
From the FBD: ]
M:=0
0.25Ryy = 0.25(4) sin 35°)
40 kN +0.2(4) cos 35°)
A Ao Rgy = 49.156 KN
T ZFy=0
S Rayr = 40 cos 35°
< =32766 kN
l B ) e, C
- B — 13 2 2
Ren - & Rp= JRHH +Ryy
e _’Tnc = 32.766% +49.1561
=59.070 KIN - shear force of pin at B}
Free Body Diagram
Ve=twuA - double shear
59.076 (1000) = ta [2[ 4+ n(20%)]}
15 = 94.02 MPa

Bearing Stress
Bearing stress is the contact pressure between the separate bodies. It differs from

compressive stress, as it is an internal stress caused by compressive forces.

Py H Py
— | 3
Py .

et

11



PRE FA CE IX

UNIVERSITY OF ANBAR %
COLLEGE OF ENGINEERING kﬂ
DAM & WATER RESOURCES 5L ‘ii J.Ln

S UNIVERSITY OF ANBAR

STREMGTH OF MATERIALS

SOLVED EXAMPLES IN BEARING STRESS

Example 125 In Fig. 1-12, assume that a 20-mm-diameter rivet joins the plates that
are each 110 mm wide. The allowable stresses are 120 MPa for bearing in the plate
material and 60 MPa for shearing of rivet. Determine (a) the minimum thickness of
each plate; and (b) the largest average tensile stress in the plates.

p E 1 P
A E © 110 MM Jrp
20-mm @
. P vy t P
Solution D S N ) S e
Figure 1-12

(a) From shearing of rivet:
P = tArives
= 60[ £ n(207)]
= 6000 N

From bearing of plate material:
P=cpAs

6000m = 120(20¢)

t=7.85mm

(b) Largest average tensile stress in the plate
P=ahA
6000r = o[7.85(110 - 20)]
o = 26.67 MPa

Example 126 The lap joint shown in Fig. P-126 is fastened by four %-in.-diameter
rivets. Calculate the maximum safe load P that can be applied if the shearing stress in
the rivets is limited to 14 ksi and the bearing stress in the plates is limited to 18 ksi.
Assume the applied load is uniformly distributed among the four rivets.

T
Ay *et|
7/8in in
4_,—;8—9—9—9.—1 e
P o

12
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Solution

Example 127: In the clevis shown in Fig. 1-11b, find the
minimum bolt diameter and the minimum thickness of each yoke
that will support a load P = 14 kips without exceeding a shearing

Based on shearing of rivets:
P=1A

P=14[4(3n)(3)°)

P =2474 kips

Based on beanng of plates:
P=op As

P=184(H )]

P =47 25 kips

Safe load P = 24.74 kips

stress of 12 ksi and a bearing stress of 20 ksi.

Solution:

0.5p

For shearing of rivets (double
shear)

P=1A

14 =12[2(4nd"))

d = 0.8618 in -> diameter of bolt

For bearing of yoke:
P=cy As
0.5P 14 = 20[2(0.8618t)]

Figure 1-11b

t = 04061 in -> thickness of yoksj

sl
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Thin-Walled Pressure Vessels

A tank or pipe carrying a fluid or gas under a pressure is subjected to tensile
forces, which resist bursting, developed across longitudinal and transverse sections.

Tangential Stress(Circumferential Stress):
Consider the tank shown being subjected to an internal pressure p. The length of
the tank is L and the wall thickness is t. Isolating the right half of the tank:

pressure

F=pA =pDL

T =06Anan =0t tl
YFu=0

F=2T

pDL = 2(o¢ tL)

o = pD/2t

If there exist an external pressure p, and an internal pressure p;, the formula may be
expressed as:
(pi —po)D

It = 5

LONGITUDINAL STRESS, 6.

Consider the free body diagram in the transverse section of the tank:

114
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The total force acting at the rear of the tank F must equal
to the total longitudinal stress on the wall Pt = 6. Ayan.
Since t is so small compared to D, the area of the wall is

close to Dt .

F=pA =p%D3

P7'=0'1_7[Dt
[XP}{=0]
P,=F
o, 7Dt = p=D*
L P4
_PD

Oy ** ===
4t

If there exist an external pressure p, and an internal pressure p; , the formula may be

expressed as:

(pi —po)D

It can be observed that the tangential stress is twice that of the longitudinal stress.

=26

Spherical Shell: If a spherical tank of diameter D and thickness t
contains gas under a pressure of p, the stress at the wall can be

expressed as:

(pi —po)D
t

I‘J'L= 4
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SOLVED EXAMPLES IN THIN WALLED PREASSURE VESSELS

Example 133: A cylindrical steel pressure vessel 400 mm in diameter with a wall
thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2. (a) Calculate
the tangential and longitudinal stresses in the steel. (b) To what value may the internal
pressure be increased if the stress in the steel is limited to 120 MN/m?? (c) If the
internal pressure were increased until the vessel burst, sketch the type of fracture that
would occur.

Solution

(a) Tangential stress (longitudinal section):
F=2T
pDL = 2(c: tL)

. pD _ 4.5(400)
ot 2(20)
o, = 45 MPa
20 Longitudinal Stress (transverse section)::
Longitudinal Section F=P
41 nD% = c; (aDt)
- PD _ 4.5(400)

i



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING
DAM & WATER RESOURCES

STREMGTH OF MATERIALS

o =225 MPa

(b) From (a), c: = ﬂ and g; = E thus, or = 2gy,.

2t 4t
this shows that tangential stress is the critical.
2t
120 = 400
2(20)
P=12MPa

(c) The bursting force will cause a stress on the:
longitudinal section that is twice to that of the:
transverse section. Thus, fracture is expected as:

shown. Expected fracture
when internal
pressure is
increased unti!
the vessel burst

400 mm
L internal
diameter

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 1748l
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CHAPTER 2

STRAIN

Simple Strain

Strain ( € ) is the ratio of the change in length caused by the applied force,
to the original length.(Also known as unit deformation).

where o is the deformation and L is the original length, thus € is
dimensionless.

Stress-Strain Diagram

Suppose that a metal specimen be placed in tension-compression testing
machine. As the axial load is gradually increased in increments, the total
elongation over the gage length is measured at each increment of the load and
this is continued until failure of the specimen takes place. Knowing the
original cross-sectional area and length of the specimen, the normal stress ¢
and the strain € can be obtained. The graph of these quantities with the stress ¢
along the y-axis and the strain € along the x-axis is called the stress-strain
diagram. The stress-strain diagram differs in form for various materials. The
diagram shown below is that for a medium carbon structural steel.

Metallic engineering materials are classified as either ductile or brittle
materials. A ductile material is one having relatively large tensile strains up to
the point of rupture like structural steel and aluminum, whereas brittle

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 184aiall
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materials has a relatively small strain up to the point of rupture like cast iron
and concrete. An arbitrary strain of 0.05 mm/mm is frequently taken as the
dividing line between these two classes.

AcTuzl Rupture =trengi N
w
Ll

U - Ukimate Strength —y

?
A R — Rupture Strength —
WY

|\ \— ¥ — Vield Paint

RS,

\ ' E — Elastic Limit

P - Progortional Limit

Q Strain, =

Proportional Limit (Hooke's Law)

From the origin o to the point called proportional limit, the stress-strain
curve is a straight line. This linear relation between elongation and the axial
force causing was first noticed by Sir Robert Hooke in 1678 and is called
Hooke's Law that within the proportional limit, the stress is directly
proportional to strain or:

g © £ Or
o=ke

The constant of proportionality k is called the Modulus of Elasticity E or
Young's Modulus and is equal to the slope of the stress-strain diagram from O
to P. Then :

oc=E¢
Elastic Limit

The elastic limit is the limit beyond which the material will no longer go
back to its original shape when the load is removed, or it is the maximum
stress that may be developed such that there is nonpermanent (or residual)

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 194aiall
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deformation when the load is entirely removed.

Elastic and Plastic Ranges
The region in stress-strain diagram from O to P is called the elastic range. The
region from P to R is called the plastic range.

Yield Point
Yield point is the point at which the material will have an appreciable
elongation or yielding without any increase in load.

Ultimate Strength
The maximum ordinate in the stress-strain diagram is the ultimate strength or
tensile strength.

Rupture Strength
Rupture strength is the strength of the material at rupture. This is also known
as the breaking strength.

Modulus Of Resilience

Modulus of resilience is the work done on a unit volume of material as the
force is gradually increased from O to P, in Nm/m3. This may be calculated as
the area under the stress-strain curve from the origin O to up to the elastic
limit E (the shaded area in the figure). The resilience of the material is its
ability to absorb energy without creating a permanent distortion.

Modulus Of Toughness

Modulus of toughness is the work done on a unit volume of material as the
force is gradually increased from O to R, in Nm/m3. This may be calculated
as the area under the entire stress-strain curve (from O to R). The toughness of
a material is its ability to absorb energy without causing it to break.

STIFFNESS, k
Stiffness is the ratio of the steady force acting on an elastic body to the
resulting displacement. It has the unit of N/mm.

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 204asall
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k=P/d

Working Stress, Allowable Stress, And Factor Of Safety

Working stress is defined as the actual stress of a material under a given
loading. The maximum safe stress that a material can carry is termed as the
allowable stress. The allowable stress should be limited to values not
exceeding the proportional limit. However, since proportional limit is difficult
to determine accurately, the allowable tress is taken as either the yield point or
ultimate strength divided by a factor of safety. The ratio of this strength
(ultimate or yield strength) to allowable strength is called the factor of safety.

AXIAL DEFORMATION

In the linear portion of the stress-strain diagram, the tress is proportional to
strain and is given by:c = Eg

sinccoc=P/Aande=9d/L,thenP/A=Ed/L. Solving for o,

_PL_ ol

§=— =
AE E

To use this formula, the load must be —m— 1T ——
axial, the bar must have a uniform cross-
sectional area, and the stress must not exceed
the proportional limit. If however, the cross-

SRR

sectional area is not uniform, the axial :
deformation can be determined by H dx
considering a differential length and applying * a
integration. de *
where A =ty and y and t, if variable, must be B ‘-f dx
s — =
L |y £1

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 2148l
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p suspended vertically from one end, the total

elongation due to its own weight is :

_pgL® _

MglL
S = —
2E

2AE

where p is in kg/m?®, L is the length of the rod in mm, M is the total mass of
the rod in kg, A is the cross-sectional area of the rod in mm?, and g = 9.81

m/s?.

SOLVED EXAMPLES ON STRAIN & AXIAL DEFORMATION

e D
Concept Application 2.1
Determine the deformation of the steel rod shown in Fig. 2.19a under
the given loads (E = 29 X 10° psi).
The rod is divided into three component parts in Fig. 2.19b, so
Li=L=12in. IL,=16in
A, = A, =09in*> A; = 03in?
To find the internal forces P), P,, and P, pass sections through each
B |B - of the component parts, drawing each time the free-body diagram of
D the portion of rod located to the right of the section (Fig. 2.19¢). Each
' 30 lins  0f the free bodies is in equilibrium; thus
~ T a pa
s i 45 kips i P, = 60kips = 60 X 10°lb
| . — P, = —15kips = —15 X 10°Ib
3
i 30 kips P, = 30kips = 30 X 10°Ib
| @
D
e fg— 8 E Ll
30 kips PL, 1(PL, PL, P,
= Taa- i e
B c i iEl 1 2 3
. D 1 [(e0 x 10%)(12)
' 30 kips T29x 1050 039
() ks 45kps L (s x 10%)(12) L, (Box 10°)(16)
Fig. 2.19 (a) Axially-loaded rod. (b) Rod 0.9 0.3
divided into three sections. (c) Three 2.90 X 10°
sectioned free-body diagrams with internal = '—E =759 % 107 %in.
resultant forces P,, P,, and P;. 29 X 10
. A
Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 2248l
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Sample Problem 2.1

The rigid bar BDE is supported by two links AB and CD. Link AB is
made of aluminum (E = 70 GPa) and has a cross-sectional area of
500 mm?®. Link CD is made of steel (E = 200 GPa) and has a cross-
sectional area of 600 mm?. For the 30-kN force shown, determine the
deflection (a) of B, (b) of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the
internal force of each link. Knowing these forces and the properties of
the links, their deformations can be evaluated. You can then use sim-
ple geometry to determine the deflection of E.

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1)
and the two links (Fig. 2 and 3)

ANALYSIS:
Free Body: Bar BDE (Fig. 1)

+NE Mp = O: —(30kN)(0.6 m) + Fep(0.2m) = 0
Ecp= +90kN  Eo, = 90kN tension
i . +YEMp = O —(30kN)(0.4m) — F,5(0.2m) = 0
Fag Fon 30 kN ]
Fip = —60kN Faip = 60kN compression
D E a. Deflection of B. Since the internal force in link AB is compres-
| | sive (Fig. 2), P = —60 kN and
0.4
~ozm ! m ' PL (—60 X 10° N)(0.3 m) .
Fig. 1 Free-body diagram of rigid bar % = AE (500 X 10 m?)(70 X 10°Pa) e
BDE.
The negative sign indicates a contraction of member AB. Thus, the
deflection of end B is upward:
6p = 0.514 mm 7
Fep=90kN
45 = 60 K
F'an kN __cl
A
A= 600 mm>
oah A = 500 mm® 04m E = 200 GPa
i E=T0GPa ‘
1 g
B D
Fap = 60 kN Fep=90kN
Fig. 2 Free-body diagram Fig. 3 Free-body diagram of
of two-force member AB. two-force member CD.
(continued)
o o
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4 N &
Sp=0514m b. Deflection of D. Since in rod CD (Fig. 3), P = 90 kN, write
B' 8p = 0.300 mm
@:BH D E 5 PL__ (0X 10° N)(0.4m)
3| D ET P AE " (800 X 10 m?%(200 X 10° Pa)
e | O =300 X 10"°°m 8, = 0300 mm |
|
|
(00 10m —z) T ¢. Deflection of E. Referring to Fig. 4, we denote by B’ and D'
|-200———400 mm ——| the displaced positions of points B and D. Since the bar BDE is rigid,
i points B', D', and E’ lie in a straight line. Therefore,
Fig. 4 Deflections at B and D of rigid
bar are used to find §;. BB BH 0514mm _ (200mm) — x 737
DD’ HD 0300mm X ¥=e.omm
EE' HE 8 (400mm) + (73.7mm)
DD’ HD 0.300mm 73.7mm
8 = 1.928 mm |
REFLECT and THINK: Comparing the relative magnitude and direc-
tion of the resulting deflections, you can see that the answers obtained
are consistent with the loading and the deflection diagram of Fig. 4.
. J

Example 201: A uniform bar of length L, cross-sectional area A, and unit

mass p is suspended vertically from one end. Show that its total elongation is
8 = pgL?/ 2E. If the total mass of the bar is M, show also that § = MgL/2AE.
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Solution 201

»m L
- Py ay = PEIY
8 EL"’dy E[Z]ﬂ

5= %[L’ -0?] = psLi/2E ok!

Given the total mass M-
'l' p=M/V=M/AL

8 = pgL?/2E = (M/AL)(gL*/2E)
&=MgL/2AE ok!

Another Solution: The weight will act at the center of gravity of the bar:
PL
5= =
AE

1 Where: P =W = (pAl)g
L=L2

5= [(pADEIL/2)

1 — L AE
2
- psL
w c

Py

For you to feel the situation,
position yourself i pull-up
exercise with your hands on the
bar and your body hang treely
above the ground. Notice that
yvour arms suffer all your
weight and your lcwer body
fells no stress (center of weight
is approximately just below the chest). If your body
is the bar, the elongation will occur at the upper half
of it.
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Example 201A :A steel rod having a cross-sectional area of 300 mm?® and a
length of 150 m is suspended vertically from one end. It supports a tensile
load of 20 kN at the lower end. If the unit mass of steel is 7850 kg/m® and E =
200 x 10° MN/m?, find the total elongation of the rod.

Solution 201A

Let & = total elongation
8 = elongation due to its own weight

__L 3, = elongation due to applied load
= 5y
a ek 82PL
- By= ——
¥ AE
wll g Where: P = W = 7850(1/1000)3(3.81)[300(150)(1000}]
3 P = 3465.3825 N
L= 75(1”; = 75 000 mm
| | R I A = 300 mm
E = 200 000 MPa
&= - il =433 mm
300 (200 000)
3 82 = E
AE
Where: P=20kN=20000N
L =150 m = 150 000 mm
g A = 300 mm?
3 E = 200 000 MPa
& = 20000(150000) P
4 " 300(200000)
f
2k I Total elongation:

5=433+50=54.33 mm
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Example 202 : A steel wire 30 ft long, hanging vertically, supports a load of
500 Ib. Neglecting the weight of the wire, determine the required diameter if
the stress is not to exceed 20 ksi and the total elongation is not to exceed 0.20

in. Assume E = 29 x 10° psi.

Solution 202
Based on maximuim allowable stress:
F
o= —
A
20000 = 5002
T +md
d=00318in

WE Based on maximum allowable deformation:

5= L
4 AE
500 Ib I 020= 500B0x12)
H—* Lrd?(29%10°)
- =
4=003%in

Use the bigger diameter, 4 = 0.0395 in

Example 203 :An aluminum bar having a cross-sectional area of 0.5 in?
carries the axial loads applied at the positions shown in Fig. P-209. Compute
the total change in length of the bar if E = 10 x 10° psi. Assume the bar is

suitably braced to prevent lateral buckling.

g W S ET R
6000 4000

e Jle e J
5 T e ek |

ft
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Solution 203

e g
6000 Ib P, = 6000 Ib
mb+

P, = 1000 b

7000 IL f~—> @—mi—»

h
6000 Ib
~—

6000 Ib

P, = 6000 1b tension

P, = 1000 Ib compression

P; = 4000 Ib tension

_FPL

AE

8=5-8+08s

5= 6000(3x12) ~ 1000(5x12) . 4000(4x12)
0.5(10x10°) 05(10x10°) 0.5(10x10%)

5 =0.0696 in (lengthening)

Example 204: Axial loads are applied at the positions indicated. Find the
largest value of P that will not exceed an overall deformation of 3.0 mm, or
the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80
MPa in the aluminum. Assume that the assembly is suitably braced to prevent
buckling. Use Eg = 200 GPa, E, = 70 GPa, and E,, = 83 GPa.

_ 2 Aluminum
A = 480 mm’ A= 650 mm . A =320 mm?
gy m— IR —>
P I T g P
I~ spe e "
10m 20m 15m
Figure P -211
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Solution 204

Based on allowable stresses:

Steel:
P, = oy
P = 140(480) = 67 200 N
P=672kN

Py = 2P Bronze:
Py = GuAsr
2» 2P =120(650) = 78 000

Pu=
re{ o eef—— P=39000N =39 kN

Aluminum:
Pa = GaAai
2P =80(320) =25 600 N'
P=12800N =128 kN

Based on allowable deformation:
(steel and aluminum lengthens, bronze shortens)
8 =38y~ Oy + Bu
P(1000) _ 2P(2000) . 2P(1500)
480(200000) 650(70000)  320(83000)

Bl — ke & ol AP
P=8461099 N = 8461 kN

Use the smallest value of P, P=12.8 kN

Example 205 :The rigid bar ABC shown in _ '?
. . . Figure P-212

Fig. P-212 is hinged at A and supported by a f?il&

steel rod at B. Determine the largest load P A = 0.50 i

that can be applied at C if the stress in the E= Ay

steel rod is limited to 30 ksi and the vertical

A B )

movement of end C must not exceed 0.10 in.

b— 2k ——— 3¢
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Solution 205

Free body and deformation diagrams:

T p’.
2R B ifr c

=

=—-——________=l,/"6‘

LR

Based on maximum stress of steel rod:
TMa=0
3P =2F4
F=04F,
P = ﬂ.ilﬁgj.'dl.;:
P =0.4[30{0.500]
P =6 kips

Based on movement at
8, _ 01

F,(4x12)
0.50(29x10)
P,=12083331b

Example 206 :The rigid bar AB, Figure P-213
attached to two vertical rods as ..
shown in Fig. P-213, is horizontal

. . Aluminum
before the load P is applied. l=3m
Determine the vertical movement ~ { A= 300
of P if its magnitude is 50 kN. .

TM.=0

5P — 2Py

F=04F;
P=04(12033.33)
F=4333331b=4.53 kips

Use the smaller value, F = 4.83 kips|

Steel

L=4m

A = 300 mm?

E = 200 GP=

B c
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Solution 206

Free body diagram:

P Pa
A c B

b 35m ———}—— 25m ——

P =50 kN
For aluminum:
[ZMe = 0] GFy = 2.5(30)
Py =20.83 kN
[a _PLT _ 20.83(3)1000°
T AE, " 500(70000)
Gai = 1.78 mom
Movement diagram:
For steel: A 15 8 2z c
[ZMa = 0] 6F. = 3.5(30) 1 _
P.=29017 kN - ———————___J-_v_______ #
[a= PL _ 29.17(4)1000° Y _194-178
AE |, *" T300({200000) 35 6
5 —104 y =009 mm
st = L% I &p = vertical movement of P
5e=178+y=178+0.09
&p = L.87 mm
Example 207:The rigid bars AB and CD | Figuep-214 =%
. . _ : L=2
shown in Fig. P-214 are supported b_y pins e
at A and C and the two rods. Determine the E=70GPa
- . 3m 3m B
maximum force P that can be applied as
shown if its vertical movement is limited e
to 5 mm. Neglect the weights of all s |
members.
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Solution 207

[TM4 = 0] 3F,; = 6P
Py=2P;

By ratio and proportion:

P - -
Og 9y
t A im im B ?= 3

_nx _nl PL

R b
EH 5, = 2| _P(2000)
500(70000)

FBD and movement diagram of bar AB

88 = x5 Pa = w5 (2P2)
Op = Hl}.ﬁ P.: = movement of B

P: 4 Movement of D:

c im im PL
B g o] Op = &g + 0 = |:_i| + ;" Py
I[:‘ L D AE], ¥7
P P, (2000
dp = s_|: } + 4:31_|5 P
Ip 300(200000) :
o

o = . P.
FBD and movement 42000
diagram of bar CD

[EM-=0] 6P, =3P

Bp _Sp
3 ]
8= 3 8p= 1 (-5 Pe)
— op = 34['10{' Pa —
 — 1 324aaal
5= i (7 P)

P=76363.64 N =764 kN
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Poisson's Ratio:

If a bar is subjected to a tensile loading there will be an increase in length
of the bar in the direction of the applied load, but there is also a decrease in a
lateral dimension perpendicular to the load. It has been observed that for an
elastic materials, the lateral strain is proportional to the longitudinal strain.
The ratio of the lateral strain to longitudinal strain is known as the Poison's

ratioand is denoted by v.

Poison's ratio (v ) = - lateral strain / longitudinal strain

where g is strain in the x-direction and g, and g, are the strains in the
perpendicular direction. The negative sign indicates a decrease in the
transverse dimension when g, is positive.

For most engineering materials the value of (v) is between 0.15 and 0.33.

For most steel, it lies in the range of 0.25 to 0.3, and 0.20 for concrete.
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BIAXIAL DEFORMATION:

If an element is subjected simultaneously by Tensile stresses, ox and o, in the
x and y directions, the strain in the x-direction is oy / E and the strain in the y
direction is oy / E. Simultaneously, the stress in the y direction will produce a
lateral contraction on the x-x direction of the amount (-v ¢, or -v 6,/E ). The
resulting strain in the x direction will be :

o (o} (e, +ve )E
Ex = _x_\,_b’ Or Gy = X—-_‘g
E E 1-v~
and
G G (e, +ve,)E
E E 1-v~

TRIAXIAL DEFORMATION

If an element is subjected simultaneously by three mutually perpendicular
normal stresses oy, oy, and 6,, which are accompanied by strains &y, €y, and &,
respectively,

1
Ex = E[G" -v(o, +0.)]

1
Ey = E[oy -v(o, +0.)]

1
€z = E[O': -v(o, +0y)]
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Tensile stresses and elongation are taken as positive. Compressive stresses
and contraction are taken as negative.

Shear Deformation and Shear Strain

Shearing forces cause shearing deformation. An element subject to shear

does not change in length but undergoes a change in shape.

The change in angle at the corner of an original rectangular element is
called the Shear Strain(y)and is expressed as:
os

YZT

The ratio of the shear stress T and the shear strain vy is called the modulus of
elasticity in shear or modulus of rigidity and is denoted as G, in MPa.

T
G=—
|4
The relationship between the shearing deformation and the applied shearing
forceis:
- VL 1L
0; = = —
AG G
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where V is the shearing force acting over an area A..

Relationship Between E. G, and v
The relationship between modulus of elasticity E, shear modulus G and
Poisson's ratio v is given as :

E
2(1+v)

Bulk Modulus of Elasticity or Modulus of Volume Expansion, K
The bulk modulus of elasticity K is a measure of a resistance of a material
to change in volume without change in shape or form. It is given as :
, E _ O
3(1-2v) AV/V

where V is the volume and AV is change in volume. The ratio AV / V is
called Volumetric Strain and can be expressed as:

AV o _ 3(1-2v)
1% K E
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Solved Problems in Poison's ratio

Problem 222: A solid cylinder of diameter d carries an axial load P. Show
that its change in diameter is 4Pv / nEd.

Solution 222

[oegp————

—r

T

The load P can be compressive or tensile

SI
€y = —VEy
G,
S, —P
— — _\4'._.
d AE
 Pd
’ jmi:E
4Pv
= e ok!
nEd

Problem 223: A rectangular steel block is 3 inches long in the x direction, 2
inches long in the y direction, and 4 inches long in the z direction. The block
IS subjected to a triaxial loading of three uniformly distributed forces as
follows: 48 kips tension in the x direction, 60 kips compression in the y
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direction, and 54 kips tension in the z direction. If v = 0.30 and E = 29 x 10°
psi, determine the single uniformly distributed load in the x direction that
would produce the same deformation in the y direction as the original loading.

Solution 223

For triaxial deformation (tensile triaxial stresses):
(compressive stresses are negative stresses)

- % [0, - v(ox + 03]

Gy = i = 6.0 ksi (tension)
A, 42)
P

gy=—L = e 5.0 ksi (compression)
A. 43

o: = L 9.0 ksi (tension)
A, 203

1
= -5000 - 0.30(6000 + 9000
%~ 20x10° | ( 4

g, = -3.276 x 10~

gy is negative, thus tensile force is required in thes
x-direction to produce the same deformation iru
the y-direction as the original forces.

For equivalent single force in the x-direction:
(uniaxial stress)

29x10°

ox = 31 666.67 psi
daaall
= E = 31 666.67 28
4(2)
P, =253 333.33 Ib (tension)
P, = 253.33 kips (tension)

~0.30 (L) = _3.276 x 10+

Ox
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Problem 224 : For the block loaded triaxially as described in Prob. 223, find

the uniformly distributed load that must be added in the x-direction to produce
no deformation in the z-direction.

Solution 224

e: = —[0:- v(o: + Gy)]

1

" E
o, = 6.0 ksi (tension)
oy = 5.0 ksi (compression)
o: = 9.0 ksi (tension)

1
- —29)( 08 [9000 - 0.3(6000 - 5000)]
e:=2.07 x10-°
gz is positive, thus positive stress is needed in the x|

direction to eliminate deformation in z-direction.

-
<

The application of loads is still simultaneous:
(No deformation means zero strain)

€,

<

- % [o:-v(o:+a)] =0

oz = v(ox + Oy)

oy = 5.0 ksi = (compression)
o:=9.0 ksi -2 (tension)

9000 = 0.30(c; - 5000)

ox = 35 000 psi

0w+6000=35(m
Gaddea = 29 000 psi
P& =29 000

2(4)
Paazea = 232 000 Ib

Podied — 232 kips
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Problem 225 : A welded steel cylindrical drum made of a 10-mm plate has an internal
diameter of 1.20 m. Compute the change in diameter that would be caused by an internal

pressure of 1.5 MPa. Assume that Poisson's ratio is 0.30 and E = 200 GPa.

Solution 225

oy = longitudinal stress
_ pD _ 1.5(1200)
4t 4(10)
oy = 45 MPa

o = tangential stress
_ E _ 1.5(1200)

G
Y 2(10)
oy =90 MPa
G
EX - &_V_y
E E
=20 _ 03 2
200000 | 200000
ex=3.825 x 10~
AD
€= —
D
AD = ¢, D = (3.825 x 10+)(1200)
AD = 0.459 mm

1.20m

thickness,
t=10 mm

X
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Problem 226 : A 2-in.-diameter steel tube with a wall thickness of 0.05 inch just fits in a
rigid hole. Find the tangential stress if an axial compressive load of 3140 Ib is applied.
Assume v = 0.30 and neglect the possibility of buckling.

Solution 226

. W= 3
ARLLLRRRLLRRRRY

(] T

g = —=-v—=L =0
E E

Oz = VO,

where ©: = tangential stress
oy = longitudinal stress
P, 3140

y
Oy= — = ———
A 7(2)(0.05)
oy = 31400/ n psi

ox — 0.30(31400/ )
Oy = 9430/ psi
ox = 2298.5 psi

Problem 227 : A 150-mm-long bronze tube, closed at its ends, is 80 mm in diameter and
has a wall thickness of 3 mm. It fits without clearance in an 80-mm hole in a rigid block.
The tube is then subjected to an internal pressure of 4.00 MPa. Assuming v = 1/3 and E =
83 GPa, determine the tangential stress in the tube.

Solution 227

Longitudinal stress:

__ 7D _ 480)

Yoar 43)
80

Oy = Y MPa

The strain in the x-direction is:

Ex = Ox_yZ¥ -
E E
Ox = WOy = tangential stress
- lﬂ
3.3 )
_Ox= 3.89 MPa m
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CHAPTER 3

Statically Indeterminate Members

There are many problems, however, in which the internal forces can not be determined
from statics alone. In fact, in most of these problems the reactions them selves—which are
external forces—can not be determined by simply drawing a free-body diagram of the
member and writing the corresponding equilibrium equations. The equilibrium equations
must be complemented by relations involving deformations obtained by considering the
geometry of the problem.

Because statics is not sufficient to determine either the reactions or the internal forces,
problems of this type are said to be statically indeterminate. The following examples will
show how to handle this type of problems.

Solved Problems in Statically Indeterminate Members:

Problem 201A: Steel bar 50 mm in diameter and 2 m long is surrounded by a shell of a cast
iron 5 mm thick. Compute the load that will compress the combined bar a total of 0.8 mm in
the length of 2 m. For steel, E = 200 GPa, and for cast iron, E = 100GPa.

Solution:

PL

E
O = Beastiron = Ostes = 0.8 mm

(«7]
]

Bearing Plate

Cast Iron, 5 B P_.; iron (2000)
cast srom —

5 5 =0.8
bt o [47(60% —50%)](100000)
P::snrof: =11000n N

s — _ Pug(2000) _
“ [$n(50%)](200000)
P = 50 000t N

>ry=0

P = Peastiron + Poieat

P =11 000n + 50 000~
P=61000nr N
P=191.64 kN

d = 50 mm

Prepared 42444
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Problem 202A: Reinforced concrete column 200 mm in diameter is designed to carry an
axial compressive load of 300 kN. Determine the required area of the reinforcing steel if
the allowable stresses are 6 MPa and 120 MPa for the concrete and steel, respectively. Use
Ec = 14 GPa and Eg = 200 GPa.

Solution 234

S ™ Byt = &

(2L} (2L)
AE), \AE)J,
oL} _ (oL
I =L
c,L o,
14000 200000

1006 =705

When o, = 120 MPa
1006, — 7(120)
O = 8.4 MPa > 6 MPa (not ok!)

When G, = 6 MPa
100(6) = 704
o= = 85.71 MPa < 120 MPa (ok!)

Use 6, =6 MPa and o, = 85.71 MPa

2XFv=0

Ps + P = 300

G Ags + O Ao =300

85.71A4 + 6]+ m(200)* — A5] = 300(1000)
79.71A + 60 000w = 300 000

A, =1398.9 mm?
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Problem 203: A rod of length L, cross-sectional area A;, and modulus of elasticity E;, has
been placed inside a tube of the same length L, but of cross-sectional area A, and modulus
of elasticity E,. What is the deformation of the rod and tube when a force P is exerted on a
rigid end plate as shown?

/—Tnhu iAg, Eg)

Rod (4,. E;)

P

"~ End plate

Solution:

Denoting by P1 and P2, respectively, the axial forces in )
the rod and in the tube, we draw free-body diagrams of ! ¢
all three elements. Only the last of the diagrams yields

any significant information, namely:

P1+Py=P (1)

Clearly, one equation is not sufficient to determine the

two unknown internal forces P; and P,. The problem is P,
statically indeterminate.

However, the geometry of the problem shows that the Py
deformations

61 and 62 of the rod and tube must be equal. We can write :

P1L P2L
01 =——and 62 =
A1E1 A2E2

(@)

Equating the deformations 81 and 62, we obtain

P1 P2

HEL - gz T ©)

Equations (1) and (3) can be solved simultaneously for P; and P5:

AEWP AgEoP
15 P, alla

pj=——= e e
'TAE, + ASE, * T AE, + AE,

Either of Egs. (2) can then be used to determine the common deformation of the rod and
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Superposition Method. We observe that a structure is statically indeterminate when ever it
is held by more supports than are required to maintain its equilibrium. This results in more
unknown reactions than available equilibrium equations. It is often found convenient to
designate one of the reactions as redundant and to eliminate the corresponding support.
Since the stated conditions of the problem cannot be arbitrarily changed, the redundant
reaction must be maintained in the solution. But it will be treated as an unknown load that,
together with the other loads, must produce deformations that are compatible with the
original constraints. The actual solution of the problem is carried out by considering
separately the deformations caused by the given loads and by the redundant reaction, and
by adding—or superposing—the results obtained.

Problem 204: Determine the reactions at A and B for the steel bar and loading shown in

Fig. 2.24, assuming a close fit at both supports before the loads are applied.

A
A = 250 mmz--___“

—

150 mm

-—

150 mim

|

150 mm

A = 400 mm3__

-

BOO N
B

Solution:

We consider the reaction at B as redundant and release the bar from that support. The
reaction Rg is now considered as an unknown load (a) and will be determined from the
condition that the deformation d of the rod must be equal to zero. The solution is carried

out by considering separately the deformation 8. caused by the given loads (b) and the
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deformation éx due to the redundant reaction Rg(C).

The deformation 8, is obtained from Eq. (2.8) after the bar has
been divided into four portions, as shown in Fig. 2.26. Following the same A 'r
procedure as in Example 2.01, we write 4|  150mm

P,=0 Py=Py=600X 10°N P, =900 X 10°N Emks ; lmimm
A=A =400X 107°m® Ay = Ay =250 X 10°m? c i
L =Ly=Ly=1L,=01%m 8 | 150mm
Substituting these values into Eq. (2.8), we obtain o Lf J’ ; 15D¢mm
S BLy ( 600 X 10°N B :
“~AE 400 X 10™%m?
600 X 10°N 900 X 10*°N \0.150 m
250 X 107%m* 250 X 10_61112) E
1.125 x 10°

oL = —r (2.17)

6L —
Fig. 2.26

Considering now the deformation 8z due to the redundant reaction A ———
Ry, we divide the bar into two portions, as shown in Fig. 2.27, and
write 2 300 mm

Pl = Pg = _RB C
A =400 X 107°m® Ay =250 X 107° m®
Ly =Ly = 0300 m 1 300 mm

Substituting these values into Eq. (2.8), we obtain TH.‘-?.

PL, P 1.95 % 10°R | Fig. 2.27
PO T - Ry (2.18)
AE T AE E

Expressing that the total deformation & of the bar must be zero, we
write
5=8,+8;=0 (2.19)
and, substituting for 8 and 85 from (2.17) and (2.18) into (2.19),
1125 % 10° (195 X 10°)R,
E E

Solving for Rg, we have
Ry = 577 x 10° N = 577 kN
' The reaction R, at the upper support is obtained from the free- —
body diagram of the bar (Fig. 2.28). We write
+1ZF,=0: R, — 300kN — 600kN + Rz =0
R, =900kN — Rz =900 kN — 577TkN = 323 kN

Once the reactions have been determined, the stresses and strains
in the bar can easily be obtained. It should be noted that, while the total
deformation of the bar is zero, each of its component parts does deform
under the given loading and restraining conditions.
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Problem 205: A rigid block of mass M is supported by three symmetrically spaced rods as
shown in Figure. Each copper rod has an area of 900 mm?; E = 120 GPa; and the allowable
stress is 70 MPa. The steel rod has an area of 1200 mm? E = 200 GPa; and the allowable
stress is 140 MPa. Determine the largest mass M which can be supported.

i W ‘

o St AN :
Copper Steel Copper
160 mm 240 mm 160 mm
L /// A
7 7
7 7
) ot
GED = 5‘5r'
W= Mg . -
| (o) (et
¥ H
S 5 (160) _ o, (240)
_Ffif'*""“mh Pat Peo |1 120000 200000
106, = 9G;;

When oz = 140 MPa

O = % (140)

Tgp = 126 MPa > 70 MPa (not ok!)
When g = 70 MPa

g.= 42 (70)

O = 77.78 MPa < 140 MPa (ok!)
Use g, = 70 MPa and o,, = 77.78 MPa

TFr=0

2Py + Pa =W

2(CeA ) + O = Mg

2[7D(?00)] + 77.78(1200) — M(9.81)
M=223584 kg

H.W

In Prob. 205, How should the lengths of the two identical copper rods be changed so
that each material will be stressed to its allowable limit?
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CHAPTER 4
Thermal Stresses
Temperature changes cause the body to expand or contract. The amount -, is

given by :
or=aL(Tf- T;) = aL AT

where (a) is the coefficient of thermal expansion in m/m°C, L is the length in
meter, and (T; and Ty) are the initial and final temperatures, respectively in °C.
For steel, a =11.25x10°/ C'.

stress will be induced in the structure. In some cases where temperature
deformation is not permitted, an internal stress is created. The internal stress
created is termed as thermal stress.

For a homogeneous rod mounted between unyielding supports as shown, the

thermal stress is computed as:

_ A
L 7,
-

deformation due to temperature changes;

or=al AT

deformation due to equivalent axial stress;
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where (o) is the thermal stress in MPa and E is the modulus of elasticity of the
rod in MPa.

If the wall yields a distance of (x) as shown, the following calculations will be

made:
or=x + Op %
oL AT = x °—EL A : [

where (o) represents the thermal stress.
Take note that as the temperature rises above the normal, the rod will be in

compression, and if the temperature drops below the normal, the rod is in
tension.
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Solved Problems in Thermal Stress

Problem 261: A steel rod with a cross-sectional area of 0.25 in® is stretched
between two fixed points. The tensile load at 70°F is 1200 Ib. What will be the
stress at 0°F? At what temperature will the stress be zero? Assume a = 6.5 x
10 in/ (in-°F) and E = 29 x 10° psi.

Solution 261
For the stress at 0°C:
& = Or + O
ok Py
2 = o (AT) + —
E (D) AE
P

c = oE(AT) + —
A

s : 1200
G = (6.5 x 107)(29 x 10°)(70) +
( N )(70) + >

o =17 995 psi = 18 ksi

5, For the temperature that causes zero stress:
1200 Ib N Or = O
‘é % Py,
1200 | ok(AT) = —
q Sat o AE

(6.5 x 107¢)(T — 70) =

1200
0.25(29x10°)

T =95.46°C
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Problem 262: A steel rod is stretched between two rigid walls and carries a tensile load of
5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the
minimum diameter of the rod? Assume a = 11.7 pm/(m-°C) and E = 200 GPa.

Solution 262

8 = 6]‘ + 653
ol P1,

F = ak(AT) + AE

P
o = oE(AT) + —
( A

5000

130 = (11.7 x 107%)(200 000)(40) +

A= 2000 _ 137.36 mm?
36.4

+md?=137.36; d=13.22mm

Problem 263: Steel railroad reels 10 m long are laid with a clearance of 3 mm at a
temperature of 15°C. At what temperature will the rails just touch? What stress would be
induced in the rails at that temperature if there were no initial clearance? Assume a = 11.7

um/(m-°C) and E = 200 GPa.

Solution 263
Temperature at which 5r = 3 mm:
=3 mm or = aL(AT)
R '3'1_ = D'.L[-JI-_*_ -JI.__-:]
I! !l._l 3 = (11.7 x 107%)(10 000)(T;— 15)
' 10 m 5 = 3 mm Tr=40.64°C

Required stress:

0=2ar
ﬂ = ok (AT)
E
o= {)'.E‘:Tif— T,} I
G = (11.7 x 107)(200 000)(40.64 — 15) 51daial

o =60 MPa
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Problem 264: A steel rod 3 feet long with a cross-sectional area of 0.25 in.? is stretched
between two fixed points. The tensile force is 1200 Ib at 40°F. Using E = 29 x 10° psi and o
= 6.5 x 10 in./(in.-°F), calculate (a) the temperature at which the stress in the bar will be 10
ksi; and (b) the temperature at which the stress will be zero.

Solution 264

(a) Without temperature change:
¢ =P/A =1200/0.25 = 4800 psi
o =4.8 ksi1 <10 ks1
A drop of temperature is needed to increase the
stress to 10 ksi. See accompanying figure.
8 =28r+ o

ok _ P
E o&(AD) + AE
P

o = aE(AT) + —
A

10 000 = (6.5 x 107)(29 x 109)(AT) + %

AT = 27 .59°F

Required temperature:
(temperature must drop from 40°F)
T =40-27.59 =12.41°F

(b) From the figure below:
o= 51"
o Py
—2 =oi(A
o OMAT)
1200 | P= aAE(Tf_ T)
L— L —> 1200 = (6.5 x 107°)(0.25) (29 x 10°)(T;— 40)

Ts= 65.46°F
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CHAPTER 5
BEAMS

Introduction :

* Beams - structural members supporting
loads at various points along the
member.

* Transverse loadings of beams are
classified as concentrated loads or
distributed loads.

* Applied loads result in internal forces
consisting of a shear force (from the
shear stress distribution) and a bending
couple (from the normal stress
distribution).

Classification of Beams:

1- Statically Determinate Beams:

Statically determinate beams are those beams in which the reactions of the
supports may be determined by the use of the equations of static equilibrium.
The beams shown below are examples of statically determinate beams.

Statically
Determinate
Beams

(@) Simply supported beam (b) Overhanging beam (c) Cantilever beam
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2- Statically Indeterminate Beams:

If the number of reactions exerted upon a beam exceeds the number of
equations in static equilibrium, the beam is said to be statically indeterminate.
In order to solve the reactions of the beam, the static equations must be
supplemented by equations based upon the elastic deformations of the beam.

Statically
Indeterminate
Beams

PO 0 PO 0

. B

(d) Continuous beam (e) Beam fixed at one end (f) Fixed beam
and simply supported
at the other end

The degree of indeterminacy is taken as the difference between the
number of reactions to the number of equations in static equilibrium that can be
applied. In the case of the propped beam shown, there are three reactions (R,
R,, and M) while only two equations (XM = 0 and XFv = 0) can be applied, thus
the beam is indeterminate to the first degree (3—2 =1).

1 p w (N/m)

; Propped Beam
Ry

TYPES OF LOADING

Loads applied to the beam may consist of a concentrated load (load applied at

a point), uniform load, uniformly varying load, or an applied couple or
moment. These loads are shown in the following figures.
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Rom v W =

Concentrated Loads

w (N/m)

-
Uniformly Varying Load

w (N/m)
Uniform Load
M
-~
[ -
o 72—\
Applied Couple

Shear Force and Bending Moment Diagrams

Shear Force and Bending Moment Diagrams
are plots of the shear forces and bending
moments, respectively, along the length of a
beam. The purpose of these plots is to clearly
show maximum of the shear force and bending
moment, which are important in the design of
beams.

The most common sign convention for the
shear force and bending moment in beams is

shown in Fig. 9.12.
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v] l
v
Positive bending moment Positive shear

Figure 9.12 Sign convention for bending
moment and shear

One method of determining the shear and moment diagrams is by the
following steps:
1. Determine the reactions from equilibrium of the entire beam.
2. Cut the beam at an arbitrary point.
3. Show the unknown shear and moment on the cut using the positive sign
convention shown in Fig. 9.12.
4. Sum forces in the vertical direction to determine the unknown shear.

5. Sum moments about the cut to determine the unknown moment.

Example (1)

For the beam shown, derive equations for shear force and bending moment at
any point along the beam.

l)

L
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Solution:

We cut the beam at a point between A and B

at distance x from A and draw thefree-body P |
diagram of the left part of the beam, directing AED“
V and M as indicated in the figure. —
2F,=0: 2M,=0:

P+V=0 Px +M=0

V=-P (}) =-Px( )

¢ Note that shear force is constant (equal P) along the beam, and bending

moment is a linear function of ( x).

Example (2):

For a cantilever beam AB of span L

supporting a uniformly distributed

load w, derive equations for shear A B

force and bending moment at any

point along the beam.
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Solution:

We cut the beam at a point C between A and B and
draw free-body diagram of AC, directing VV and M as "
indicated in Fig. Denoting by x the distance from A U 'H l l)‘“
to C and replacing the distributed load over AC by its

<

resultant (wx) applied at the mid point of AC, we

write:
2F,=0: 2M,=0:

-wx -V =0 (\)

wxl—]1+M=20
2
_ 1 5
V =-wx M= — —wx
2

Example (3):

For the simply supported beam AB of span
L supporting a single concentrated load P,
derive equations for shear force and A
bending moment at any point along the

beam.

1=
~
s —
0
to)—
~
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Solution:

We first determine the reactions at the supports ' 1L 3L '
from the free-body diagram of the entire beam; we ‘ ‘
find that the magnitude of each reaction is equal to A T = |B
P/2. Next we cut the beam at a point D between A T : ‘ i

and C and draw the free-body diagrams of AD and o

DB. Assuming that shear and bending moment are

positive, we direct the internal forces V and V” and PR, o

the internal couples M and M’ as indicated in Fig. D lyl

Considering the free body AD and writing that the ‘”T:]

p
sum of the vertical components and the sum of the M ( AP ‘C 1 -
moments about D of the forces acting on the free &r,=1p T |
body are zero, we find: 2 —_ |
V =+P/2 and M =+Px/2. Rp=2P
Both the shear and bending moment are therefore P ,
positive; this may be checked by observing that the c‘ E)
reaction at A tends to shear off and to bend the beam 4! J‘ 3"
at D as indicated in Figs. b and c. The shear has a 1|;,‘=‘T1' " (?
constant value V =P/2, while the bending moment i !
increases linearly from M =0 at x = 0 to M =PL/4 at . x t—L — -\'—'t
X =L/2. . (c) Rg= %1‘
Cutting, now, the beam at a point E between C and B and considering the free body EB
(Fig. c), we write that the sum of the vertical components and the sum of the moments
about E of the forces acting on the free body are zero. We obtain:
=-P/2 and M =P(L -x)/2.
The shear is therefore negative and the bending moment positive; this can be checked by
observing that the reaction at B bends the beam at E as indicated in Fig. ¢ but tends to shear
it off in a manner opposite to that shown in Fig. b.
Note that the shear has a constant value V = -P/2 between C and B, while the bending
moment decreases linearly fromM =PL/4atx=L/2toM=0atx =L.
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Shear Force and Moment Diagram

The determination of the maximum absolute values P,
of the shear and of the bending moment in a beam are
greatly facilitated if V and M are plotted against the C
distance x measured from one end of the beam. -"__|.___ b
Besides, as you will see later, the knowledge of M as a T —
function of x is essential to the determination of the .
deflection of a beam. (@)

In the examples and sample problems of this section,
the shear and bending-moment diagrams will be Py t
obtained by determining the values of V and M at
selected points of the beam. These values will be found |
in the usual way, i.e., by passing a section through the
point where they are to be determined (Fig. a) and v ®
considering the equilibrium of the portion of beam
located on either side of the section (Fig. b). Since the P,
shear forces V and V have opposite senses, recording V'
the shear at point C with an up or down arrow would be
meaning less, unless we indicated at the same time Y o [
which of the free bodies AC and CB we are
considering. Ry

M

For this reason, the shear V will be recorded with a sign: a plus
sign if the shearing forces are directed as shown in Fig.a, and a
minus sign otherwise. A similar convention will apply for the
bending moment M. It will be considered as positive if the
bending couples are directed as shown in that figure, and negative
otherwise. Summarizing the sign conventions we have presented, 3
we state: > TP
The shear V and the bending moment M at a given point of <‘él) \,(I;
abeam are said to be positive when the internal forces and i Ttbrnil Eovnee
couples actingon each portion of the beam are directed as shown  (positive shear and positive bending moment)
in Fig. a.
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Example (4): For the beam shown, plot the shear and moment diagram.

Solution:

First, solve for the unknown reactions using
the free-body diagram of the beam shown in Fig,
(a). to find the reactions, sum moments about the
left end which gives:

6R; — (3)(2)=00rR;=6/6 =1 kN
Sum forces in the vertical direction to get:

R1+R2=3=R1+10rR1:2kN

Cut the beam between the left end and the load as
shown in (b). Show the unknown moment and
shear on the cut using the positive sign
convention. Sum the vertical forces to get:
V = 2 kN (independent of x)
Sum moments about the cut to get:
M = Rix = 2x

Repeat the procedure by making a cut between
the right end of the beam and the 3-kN load, as
shown in (c). Again, sum vertical forces and sum
moments about the cut to get:

V =1 kN (independent of x ), and M = 1x
The plots of these expressions for shear and
moment give the shear and moment diagrams (as
shown in Fig.(d) and (e).

VI—. 2kN
0
] 1kN
(d)
4 kNem

M
o /\

(e)

614aiall
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e It should be noted that the shear diagram in this example has a jump at the point of the
load and that the jump is equal to the load. This is always the case. Similarly, a moment
diagram will have a jump equal to an applied concentrated moment. In this example, there
was no concentrated moment applied, so the moment was everywhere continuous.

e  Another useful way of determining the shear
and moment diagram is by using differential
relationships. These relationships are found by
considering an element of length Ax of the beam.

The forces on that element are shown in Fig.

>Fy=0: V-(V+AV)-wAXx=0

AV = -WAX
Summation of forces in the y direction gives :

which gives:
av
dx
XD
Vp —Ve =— [wdx
Xc

SMc =0: (M+AM)-M -V Ax+wa%=o
AM =V Ax—%w(Ax)2

MD—MczTVdX

Xc
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The load g = —w,, so Eq. (9.59) reads

I W, dx————wox

Noting that the moment at x = O is zero, Eq. (9.60) gives

wolx wox? WoX (-
2 2 '

M=M, H—-wo ]dt 0+

Example(5) The simply supported -
uniform beam shown in Exhibit 16 EEERERERRRRRRIRINEY!
carries a uniform load of wy . Plot the
shear and moment diagrams for this <
beam. Exhibit 16

|
=

~

Solution

As before, the reactions can be found first from the free-body diagram of the beam
shown in Exhibit 17(a). It can be seen that, from symmetry, R, = R,. Summing
vertical forces then gives

w, L

R=R-R -
-~ R =

 EETEEREREREREY!
Jr A
A, A,
(a)
w,L/2
v \\J
-w,l/2

(b)

w,L?/2
W

()

Exhibit 17
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It can be seen that the shear diagram is a straight line, and the moment
varies parabolically with x. Shear and moment diagrams are shown in
Exhibit 17(b) and Exhibit 17(c). It can be seen that the maximum bending
moment occurs at the center of the beam where the shear stress is zero. The
maximum bending moment always has a relative maximum at the place
where the shear is zero because the shear is the derivative of the moment,
and relative maxima occur when the derivative is zero.

Solved problems

Write shear and moment equations for the beams in the following problems. In each
problem, let x be the distance measured from left end of the beam. Also, draw shear
and moment diagrams, specifying values at all change of loading positions and at points

of zero shear. Neglect the mass of the beam in each problem.

Problem 403

Beam loaded as shown in Fig. P-403.

30 kN 50 kN

1, b
= | &

im 3m 2m
Figure P-403

Solution: From the load diagram:

TMe=0

5Rp + 1(30) = 3(50)

Rp=24 kN

IMp=0

5Rg = 2(50) + 6(30)

Ry =56 kN

30 kN
Segment AB: l
Vas=-30kN AT

Mg = -30x kN-m e o
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Segment BC: W
Vec = -30 + 56 5
=26 kN A
Mzpc=-30x + 56(x - 1)
= 26x -56 kN-m -
im
=56 kN
- Segment CD: "
:aoncmB sow‘c Voo = 30 + 56 - 50
A C 3 -4 kN
L_$ ] Mep = -30x + 56(x - 1) - 50(x - 4)
im im k = _30x + 36x - 56 - 30x + 200
Re = 58 kN - 24x +144
To draow the Shear Diagram:
(1) In s=gment A3, the shear is
load A ursformly distnbuted over the
Diagram mmmt =t a magnitude of =30
(2] In segment BC, the shear is
uriformly  distibuted  at  a
magnitude of 26 kN,
(3) In segment CD, the shear is
uriformly  disvibuted at a
Shear
Diagram To draw the Moment Diagram:
(1) The ecquation My = -30x is
linear, st x = 0, My = 0 and at
X=1m,Mg=-30 kNm.
(2) Mgc = 26x — 56 is also Frear.
ALx=1m, Mg =-30 kNm; at
¥ =4 m, Mg = 43 kN-m, When
i t Mec = 0, x = 2,154 m, thus the
Diagram moment & zero 3t L1549 m
from B.
[3) My = -24x + 144 & again
=30 kN-m lincar, At x = 4 m, Mo = 48

kN.m; at x = 6m, M = 0.
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CHAPTER 6
STRESSES IN BEAMS

Forces and couples acting on the beam cause bending (flexural stresses) and
shearing stresses on any cross section of the beam and deflection
perpendicular to the longitudinal axis of the beam. If couples are applied to
the ends of the beam and no forces act on it, the bending is said to be pure
bending. If forces produce the bending, the bending is called ordinary
bending.

Flexure Formula:

Assumptions
1) A plane section of the beam normal to its longitudinal axis prior to loading remains

plane after the forces and couples have been applied.
2) The beam is initially straight and of uniform cross section.
3) The moduli of elasticity in tension and compression are equal.
4) The stresses and strains are small (within elastic range), material is homogeneous

and Hooks law is applied.

Deformations In A Symmetric Member in Pure Bending

S0 1k 50 1h

12 in. 265 in.
I

Al - ¥:

4 M

‘ ) R~ = 5801h Rp =50 Ik

Fig.1 Member in pure bending. M

960 b - in M 960 b - in

(h

Fig. 2 Beam in which portion CD is in pure bending.
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Fig.3 Deformation of member in x

pure bending. (@) Longitudinal, vertical section
(plane of symmetry)

x

M

-
~

(b) Longitudinal, horizontal section

Neutral
axis
4 I c
(@) Longitudinal, vertical section (b) Transverse section
(plane of symmetry)

Fig. 4 Deformation with Respect to Neutral Axis

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 674asall




UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

DAM & WATER RESOURCES

UNIVERSITY OF ANBAR

STREMGTH OF MATERIALS

Denoting by p the radius of arc DE (Fig. 4-a), by © the central angle corresponding to
DE, and observing that the length of DE is equal to the length L of the unreformed member,
we write :

[4 - Pe ---------------------- (1)

The arc JK located at a distance y above the neutral surface, we note that its length is :

L' =(p = y)f - ()
Since the original length of arc JK was equal to L, the deformation
of JK is:

§=L — L -eeeeeeeemeeeemeeemeee. (3)
or, if we substitute from (1) and (2) into (3), :

0=0pE —yb— pb=—yb - 4)

The longitudinal strain € in the elements of JK is obtained by dividing
6 by the original length L of JK. We write:

0 —y6
6\‘ —_— =
L p6o
Y
Or €, = T e (5)
P

Because of the requirement that transverse sections remain plane, identical deformations
will occur in all planes parallel to the plane of symmetry. Thus the value of the strain given
by Eq. (5) is valid anywhere, and we conclude that the longitudinal normal straing varies
linearly with the distance y from the neutral surface.

The strain g reaches its maximum absolute value when vy itself is largest. Denoting by c the
largest distance from the neutral surface (which corresponds to either the upper or the lower
surface of the member), and by &y, the maximum absolute value of the strain, we have:
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Stresses And Deformations In The Elastic Range

We now consider the case when the bending moment M is such that the normal stresses
in the member remain below the yield strength o,. This means that, for all practical
purposes, the stresses in the member will remain below the proportional limit and the
elastic limit as well. There will be no permanent deformation, and Hooke’s law for uniaxial
stress applies. Assuming the material to be homogeneous, and denoting by E its modulus of
elasticity, we have in the longitudinal x direction:

Recalling Eq. (7), and multiplying both members of that equation by E, we write:

Y
Ee, = — ?(Ee,,,)

Or Yy
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where o, denotes the maximum absolute value of the stress. y
This result shows that, in the elastic range, the normal stress
varies linearly with the distance from the neutral surface

‘R§
(Fig.5). \:tz

It should be noted that, at this point, we do not know the 'i
location of the neutral surface, nor the maximum value o, of TN s i
the stress. Both can be found if we recall the equations of ™\

equilibrium which were obtained earlier from statics. >
Substituting first for o, from (5) into

: Fig. 5 Bending stresses.
YF.=0, Jo.dA=0

we write :

" (Y G, |
’oi\. dA = (—’(—_a,,,)(lA = ‘g/ dA =0

This equation shows that the first moment of the cross section about its neutral axis
must be zero. In other words, for a member subjected to pure bending, and as long as the
stresses remain in the elastic range, the neutral axis passes through the centroid of the
section.

We now recall the 3". Eq. of equilibrium, with respect to an arbitrary horizontal
Z - axis,

Y M, =0 , J(—yo, dA) = M

Specifying that the z - axis should coincide with the neutral axis of the cross section, we
substitute for ay from (9) and write :

. y
‘(—y) —;70',,, dA =M
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O.HI

lyﬂ(IA =M

c
But R
ly"dA = |

(where 1 is the second moment, of the cross section with respect to a centroidal axis
perpendicular to the plane of the couple M ), then we can write :

Mc
Op = — e
m I (11)
And, My
o, = — I‘ e (12)

Equations (11) and (12) are called the elastic flexure formulas, and the normal stress oy
caused by the bending or “flexing” of the member is often referred to as the flexural stress.
We verify that the stress is compressive (g > 0) above the neutral axis (y > 0) when the
bending moment M is positive, and tensile (ax < 0) when M is negative.

Note:: from now, in this chapter the notation ( f, will be used instead of o,
to denote the flexural stress.

Now we can write:

=" and (fou=
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SECTION MODULUS

Mc M
In the formula, ( fp)max = T IJc

the ratio I/c is called the Section Modulus and is usually denoted by S with units of mm? or
(in*). The maximum bending stress may then be written as :

M

( fb)max = ?

This form is convenient because the values of S are available in handbooks for a wide
range of standard structural shapes.

The deformation of the member caused by the bending moment M is measured by the
curvature of the neutral surface. The curvature (k) is defined as the reciprocal of the radius
of curvature p, and can be obtained by from :

1 . 1l o, 1 Mec
Then, — _— =M p Ec Ec 1
P c
1 M
; = £l T (13)
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SOLVED PROBLEMS IN FLEXURE FORMULA

Problem 503 A: cantilever beam, 50 mm wide by 150 mm high and 6 m long, carries a
load that varies uniformly from zero at the free end to 1000 N/m at the wall. (a) Compute
the magnitude and location of the maximum flexural stress. (b) Determine the type and
magnitude of the stress in a fiber 20 mm from the top of the beam at a section 2 m from the

free end.
Solution 503

M=F(4x)
y _ 1000
x 6
y= x

I I

ok

n A @
¥

m M T
]
N )

> 2
M= Bx*(4x)

M= 35

(a) The maximum moment occurs at the support (the
wall) or at x = 6 m.

b = 50 mm

h = 150 mm

M= 3’ = 32(6%)
= 6000 N-m

Mc Mc
(B = =1 = 2

12
o = 6000(1000)(75)
J7 50(150)°

12
(5 )max = 32 MPa

(b) At a section 2 m from the free end or at x = 2 m at
fiber 20 mm from the top of the beam:

20 mm
y =55 mm

i

b = 50 mm

h = 150 mm

M= 3 = 302)°
M= 22 N.m

(22)(1000)(55)
50(150)°

12
fr=0.8691 MPa = 869.1 kPa

_ My _
fo I
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Problem 504

A simply supported beam, 2 in wide by 4 in high and 12 ft long is subjected to a

concentrated load of 2000 Ib at a point 3 ft from one of the supports. Determine the

maximum fiber stress and the stress in a fiber located 0.5 in from the top of the heam

at midspan.

Solution 504

2000 Ib

r—3&~1

Mg =0
12R, = 9(2000)
R; = 1500 Ib

IMp =0

T

12t

12R: = 3(2000)
Rz =500 Ib

I
Ry
i 1500 Ib

Shear Diagram

Moment Diagram

i
R: Maximum fiber stress:

b=4in

Lo

b=2in

(5 Do = % _ 4500(12)(2)

2(4)
12
( fo Jmax = 10,125 psi

Stress in a fiber located 0.5 in from the top of the
beam at midspan:
M, 50
6 9
Mpm = 3000 1b-ft

3000(12)(1.5
4= 300002)(15)

2(4%)
12 e

fo=5,062.5 psi b=2in

b=4in
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Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in
beams was for the case of pure bending i.e. constant bending moment acts along the entire
length of the beam.

Let us consider the beam AB transversely P P
loaded as shown in the figure above. l l
Together with shear force and bending | ) ! |
moment diagrams we note that the middle AL c D
potion CD of the beam is free from shear —3a 5 ———e

force and that its bending moment. M = P.a
is uniform between the portion C and D. This
condition is called the pure bending
condition.

Since shear force and bending moment
are related to each other F= dM/dX (eq)
therefore if the shear force changes than
there will be a change in the bending
moment also, and then this won't be the pure
bending.

+P

-P

Conclusions: Hence one can conclude
from the pure bending theory was that the
shear force at each X-section is zero and the
normal stresses due to bending are the only
ones produced.

P.a

Let us study the shear stresses in the beams.

Concept of Shear Stresses in Beams :

By the earlier discussion we have seen that the bending moment represents the
resultant of certain linear distribution of normal stresses &x over the cross-section.
Similarly, the shear force Fx over any cross-section must be the resultant of a certain
distribution of shear stresses.

Derivation of equation for shearing stress :
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Resultant stresses (this side is more as

- compared to the other side)
\ £

ob‘v ““““ ~——0+do dA
X S A -_e_"_/_ This Is the small |
=7 element over which |/

=
? A the stresses acts

M+3M Z = width of the
AN X- section

4 ‘ section 2
Resisting shear stress.

Assumptions :
1. Stress is uniform across the width (i.e. parallel to the neutral axis)
2. The presence of the shear stress does not affect the distribution of normal bending
stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear

stress will cause a distortion of transverse planes, which will no longer remain plane.

In the above figure let us consider the two transverse sections which are at a distance ¢ dx'
apart. The shearing forces and bending moments being F, F + dF and M, M + dM
respectively. Now due to the shear stress on transverse planes there will be a
complementary shear stress on longitudinal planes parallel to the neutral axis.

Let T be the value of the complementary shear stress (and hence the transverse shear stress)
at a distance y, from the neutral axis. Z is the width of the x-section at this position

A is area of cross-section cut-off by a line parallel to the neutral axis.

¥ = distance of the centroid of area from the neutral axis.

Let § , 6+ dé are the normal stresses on an element of area dA at the two transverse
sections, then there is a difference of longitudinal forces equal to ( dé . dA) , and this
guantity summed over the area A is in equilibrium with the transverse shear stress t on the
longitudinal plane of area zdx .
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e TEfK= Ida.d»‘l‘«
fram the bending theary equation
a _ M

Thus |:Ic:r=5r'"f|1—'Elr

The figure shown  below
indicates the pictorial
representation of the part.

(o+do)dA

do = Gy
I
TIZOK = ,[dcr.dﬂx 6!
_ .[ ahd -y B4 {Pictorial representation

| of entire part)
T.Z0%x = $ ,[y.ﬁﬂx

il
F=——
G

ig. T= i,[j,f.ﬁf-‘«
l.z

But

But from defintion, | y.dA = Ay

Iy.dﬂx iz the first moment of area of the shaded portion
and y =centroid of the area'A’
Hence

F.iy
l.z

']':

Where ‘Z' is the actual width of the section at the position where ° T ' is being calculated and
| is the total moment of inertia about the neutral axis.
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Shearing stress distribution in typical cross-sections:

Let us consider few examples to determine the sheer stress distribution in a given X-
sections.

Rectangular x-section:

Consider a rectangular x-section of dimension b and d .

A is the area of the x-section cut off by a line parallel to the neutral axis. y is the
distance of the centroid of A from the neutral axis.

forthiscase, A

1l
(=
P
[ e B |
I
=
\\
\_"\

[ (di2-y)

While ~yl+y] v |7

—=|
1

3
ie y=;_|:§+g,r) andz=h;l=%

substitutingallthesevalues, intheformula

;= Fhy
l.z
d 1 d
Fbhiz-v.-i=+
(2 ¥l 5 ':2 ¥)

3
h_h'd

12

{9

b, of*

This shows that there is a parabolic distribution of shear stress with y.
The maximum value of shear stress would obviously beat the location y = 0.
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o)

suchthat 1

E.F ﬁ
4

b.d

L
T

Zbd

=0 Trnax =% The value of T, occurs at the neutral axis

The mean shear stressinthe beamis defined as

TmeanOF Tawg = % = F/E,_d

S0

Trax= 18 Trean = 1.5 Tavg

Therefore the shear stress distribution is shown as below.
It may be noted that the shear stress is distributed parabolically over a rectangular cross-

section, it is maximum at y = 0 and is zero at the extreme ends.

==y
o -
{dr2) 4 i,
Ty
j {Shear stress is distributed
(6/2) parabolically over a reclangular
cross-section, It is maximum at
y=0 and is zero at the extrame
Trmax™ ends)
il

| —section :

7 W‘///

b -

Consider an | - section of the dimension shown below.

k—.{ — Flange
B /

K
72 ',

A
y

2

N L ——A

«———— web

[Here flange and web
thickness are same)
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The shear stress distribution for any arbitrary shape is given as
_FAY
T

Let us evaluate the quantity Ay , the quantity Ay for this case comprise the
contribution due to flange area and web area.

Flange area ;
Area of the ﬂange=5[¥] I i
Distance of the centroidofthe flangefromthe M A,

go1(0-d),d

20 2 2

__ {D+d 4z

¥= [ ) ] N o y A
Hence,

— D-dyfD-d
"E"'.'I'I|Flange =B[T]{T]
Web Area
Areaofthewsh b

-t

Distance of the centroid from M.A

1fd
— -+ j
[2 }.f] ¥ di2

Therefare,

- d 11d
AYlwehzh[i'Y]i {E"'B"]

Hence,

_ D -dY{D+d d g Y
A =Bl —— || ——|+b | =- —+y
¥ ol { 5 ][ 7 ] {2 r.f][2 y]z

Thus,

Therefore shear stress,
B(D? - d* x

I GG DT Cie
bl g 21 4
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To get the maximum and minimum values of t substitute in the above relation.
y =0at N. A. And y = d/2 at the tip.
The maximum shear stress is at the neutral axis. i.e. for the condition y = 0 at N. A.

L atj,r=D=%[Ei 07 - #)+b8?] .. (2)

Hence,
The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is
given by the following expression :

e aty =82 =2 B0 - )| ®)

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic
distribution:

d Ty
D N — e A

. =% [B(D? - ) +bi]

Note: from the above distribution we can see that the shear stress at the flanges is not zero,
but it has some value, this can be analyzed from equation (1). At the flange tip or flange or
web interface y = d/2. Obviously then this will have some constant value and then onwards
this will have parabolic distribution.
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In practice it is usually found that most of shearing stress usually about 95% is carried by
the web, and hence the shear stress in the flange is negligible however if we have the
concrete analysis i.e. if we analyze the shearing stress in the flange i.e. writing down the
expression for shear stress for flange and web separately, we will have this type of
variation:

Parabolic
This  distribution s | I >

known as the “top — hat” B
distribution. Clearly the Y

web bears the most of the =y — -
shear stress and bending T
theory we can say that =/
the flange will bear most S/
of the bending stress. | | -

Town I

Tav

Shear stress distribution in beams of circular cross-section:
Let us find the shear stress distribution in beams of circular cross-section. In a beam of
circular cross-section, the value of Z width depends ony.
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Using the expression for the determination of shear stresses for any arbitrary shape or a

arbitrary section.

_ FAY _ FA Jyda
il 7

Where 0y dA is the area moment of the shaded portion or the first moment of area.

Here in this case ‘dA' is to be found out using the Pythagoras theorem:

2
5] e

2
[%] —RT - yF Dr§= T

=2 2_,3,2

dA=Z dy =2.0R% - @ dy

jlﬂ4

| . . =
W for acircularcross-gsection g

Hence,

_FAY _ F R 7 _ 3
= = 2 R -wd
H A =T EJ. A B

T2 —y

Where R =radius of the circle.
[The limits have been taken from y, to R because
we havetofind moment of areathe shaded portion]

_ 4 F 7 z_ .2
T
The integration vieldsthefinal result to be
_4F[R? - v
3aR?

Againthisisaparabolic distribution of shear stress having
amaximumyaluewheny, =0

4F
3aR?
Cbviously atthe endsof the diameterthevalueof yy = 2R thusr=0

T

Trae™ |y =0 =

sothisagainaparabolic distribution;maximumattheneatralaxis

Also
T orT =F ——F
arg mean K ﬂﬁz
Hence,
TI'I'IEZ'ZI-I-I ) Talrg
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The distribution of shear stresses is shown below, which indicates a parabolic distribution:

—
e
—

An_
3nR?

Quiz No. 4 :
For the beam and loading shown :
Draw the shear and bending-moment diagrams and determine the maximum

value of (w) which can be applied such that the normal bending stress will not
exceed (120 MPa).

For the section S250x52 use : 1 =61.2 x10° mm* , S =486 x 10 mm?

W (kN/m)

64 kN - m l l l
C D ] 1

5 I

$250 X 52

,,
T
,‘

2m—f=—2m——2m
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Unsymmetrical Beams

Flexural Stress varies directly linearly with distance from the neutral axis. Thus for a
symmetrical section such as wide flange, the compressive and tensile stresses will be the
same. This will be desirable if the material is both equally strong in tension and
compression. However, there are materials, such as cast iron, which are strong in
compression than in tension. It is therefore desirable to use a beam with unsymmetrical
cross section giving more area in the compression part making the stronger fiber located at
a greater distance from the neutral axis than the weaker fiber. Some of these sections are
shown below.

The proportioning of these sections is such that the ratio of the distance of the neutral
axis from the outermost fibers in tension and in compression is the same as the ratio of the
allowable stresses in tension and in compression. Thus, the allowable stresses are reached
simultaneously.

In this section, the following notation will be use:

for = flexure stress of fiber in tension.

foc = flexure stress of fiber in compression.
N.A. = neutral axis.

y; = distance of fiber in tension from N.A.

y. = distance of fiber in compression from N.A.
Mr = resisting moment.

Mc = resisting moment in compression.

Mt = resisting moment in tension.
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Solved Problems in Unsymmetrical Beams

Example (1)

The inverted T- section of a 4-m simply supported beam has the properties shown in Fig.
The beam carries a uniformly distributed load of intensity w, over its entire length.

Determine w, if fyy < 40 MPa and f,. < 80 MPa.

Solution: ]
1 200 mm
Mo = 3 Ws L2 w, KN/
= luw,@® -
JJVV Y‘Vl YYYVYY
= 2w, 80 mm
L=4m o
Tna = 30 x 10° mm*
M = M Ry R,
y Member B -1
Meax = 1/8 W, 12
40(30%x10°)
M I ——
80
=15 000 000 N-mm
=15 kN-mm
_ 80(30x10°)
M 200
=12 000 000 N-mm
=12kN-mm
The section is stronger in tension and weaker in
compression, so compression governs in selecting the
maximum moment.
A%\m( =M
2w, =12
w, = 6 kN/m
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Example (2)

Determine the maximum tensile and compressive stresses developed in the
overhanging heam shown in Fig. P-554. The cross-section is an inverted T with the

given properties.

1600 b 4000 Ib
| .
} L
T THOEET
R R
Figure P-554
Solution 554
IMp=0
12R; = 1600(15) + 4000(6)
R; =40001b
IMg =0
12R, + 1600(3) = 4000(6)
R, =16001b
1600 Ib l4ooo b fi= My
Load I
Diagram
ILa& 6 ft Jf 6 ft At M = —4800 Ib-ft
Ry = 4000 Ib R, = 1600 b fiem Msi)(u)
ook = 137143 psi > lower fiber
j 3 Shear
| [ | Diagram ¢ - 48007)(12)
-1600 b 1600 / 81

= 4800 psi - upper fiber

/\uunmt AtM = +9600 Ib it
—.' Diagram

\/ 4= 90007)12)

84
800 bRt =900 psi > upper fiber
_ 9600(2)(12)
o —
=274286 psi -> lower fiber
Maximum flexure stress:
ﬁ,, = 9600 psi
fre = 4800 psi
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Example (3)

A cantilever beam carries the force and couple shown in Fig. P-552. Determine the

maximum tensile and compressive bending stresses developed in the beam.

5 30 kipft
6in
T Ez in
4ft 4ft
Figure P-552
Solution 552
R=5kip
M=5(8)-30
| ~ -
e aft I
: R=>5kip At M = +10 kip-ft of moment diagram
_ 10(6)(12)
N 'ﬁ‘ %

: S 4= 102)12)
- T
~ -10 kipft

= 2.67 ksi - lower fiber

At M = -20 kip-ft of moment diagram
= 20(2)(12)
A 90
=5.33 ksi - lower fiber

20(6)(12
fu= (6)(12)

90
=16 ksi - upper fiber
Maximum bending stresses:
foe =8 ksi
fir=16 ksi
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Example (4)

A beam carries a concentrated load W and a total uniformly distributed load of 4W as
shown in Fig. P-555. What safe value of W can be applied if f,. < 100 MPa and f,, < 60

MPa? Can a greater load be applied if the section is inverted? Explain.

w l ]'ﬂ’n mm

L—Zm 4m

R, R, I = 24 x 10° mm*

4R, = 6W+4M2)
R =3.5W
4R: + 2W=4M2)
R =15W

AtM=-22IW

For lower fiber, #. <100 MPa

DL H 100 = 2W(125)(1000)
24x10°
W=9600 N

- For upper fiber, fe < 60 MPa
60 = 2WI73)(1000)

24x10°
W=9600 N

At M =1125W
For upper fiber, £. < 100 MPa
100 - 1.125W(75)(1000)
234x10°
W=28444 4N
For lower fiber, f; < 60 MPa
0 - L125W(125)(1000)
24x10°
W=102490 N

For safe load W, use W= 9600 N
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CHAPTER 7
Deflection of Beams

(1) Method of Double Integration

Differential Equations of the Deflection Curve (Elastic Curve):

The problem of bending probably occurs
more often than any other loading problem in
design. Shafts, axles, cranks, levers, springs,
brackets, and wheels, as well as many other | -
elements, must often be treated as beams in the
design and analysis of mechanical structures and ‘
system. | | "

A beam subjected to pure bending is bent into
an arc of circle within the elastic range, and the

relation for the curvature is: b)

1 M(x)
TR (1)

Yo,

Where: p is the radius of the curvature of the neutral axis?
X is the distance of the section from the left end of the beam.

The curvature of a plane curve is given by the equation:
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1
P e )
{P{dyj T
dx

(d—yJ is the slope of the curve and in the case of elastic curve the slope is very

dx
small:
2
HENE
dx
= - - X
1_dy S
then 0 dx2
d’y  M(x)
or dXZ_ EI (3)

Multiply both sides by EI which is constant and integrating with respect to x:

El (%j — [M(x) dx +C; (4)
Noting that [?] =tan(f) =0(x) because the angle 0 is very small.
X

Then Eq. (4) can be written as:

EI§(x) = J CM(x) dx + C,

0

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 91iadall



UNIVERSITY OF ANBAR

&

DAM & WATER RESOURCES g ’. J.Ln
) 1987 : L08
UNIVERSITY OF ANBAR

COLLEGE OF ENGINEERING

STREMGTH OF MATERIALS

And integrating the equation again:

Ely=[[]M@)dx+Ci]dx+C, (5)
Ely=][]M(x)dx] dx + C; x + C,
The constants C; and C, are determined from the boundary conditions

(constants) imposed on the beam by its supports.

The figure shows different boundary
conditions applied for the three typical y
types of statically determinate beams:

(a) the simply supported beam, (b) the
overhanging beam, and (c) the cantilever
beam.

In the first two cases, the supports
consist of a pin and bracket at A and of a (a) Simply supported beam
roller at B, and require that the deflection
be zero at each of these points. Letting first

B

X =Xa Y =VYa=01in Eqg. (5), and then A= e 1

X = Xg, Y =Yg = 0 in the same equation, we DA =~
obtain two equations that can be solved for
Cland C2. n— :

(0) Overhanging beam

In the case of the cantilever beam, we
note that both the deflection and the slope ""
at A must be zero. Letting X = Xa, Yy =ya=0 |
inEq. (5),and x =x5, 0=60,=0InEq. (4), | 4+ I  — :
we obtain again two equations that can be
solved for C1 and C2.

s =() B

(¢) Cantilever beam
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The cantilever beam AB is of uniform cross section and carries a load P
at its free end A (Fig. 9.9). Determine the equation of the elastic enrve
and the deflection and slope at A.

P
P

v
| Y
A B A M

I
]
Fig. 9.9 Fig. 9.10

Using the free-body diagram of the portion AC of the beam
(Fig. 9.10), where C is located at a distance x from end A, we find

M= —Fx

| L

(9.7)

Substituting for M into Eq. (9.4) and multiplying both members by the
constant El, we write

rfgaf
= —Px
d?
Integrating in x, we obtain
dt .
EI g = —%P_rz + C, (9.5)
dx

We now observe that at the fived end B we have x = L and 6 = dy/dx = 0
(Fig. 9.11). Substituting these values into (9.8) and solving for C,, we
have

C, = 3PL?
which we carry back into (9.8):
EI j—": = —3P:® +iPL2 (9.9)
Integrating both members of Eq. (9.9), we write
Ely= —4Px® + 3PL% + C, (9.10)

But, at B we have x = L, y = 0. Substituting into (9.10), we have
0= —3PL® + 3PL* + (3
Cy = —3PL’
Carrying the value of C; back into Eq. (9.10), we obtain the equation of
the elastic curve:
Ely = —Lip® + ipPL% — LpP1?
or

P
—(—x" 4+ 3L% — 2L

Y=g (9.11)

The deflection and slope at A are obtained by letting x = 0 in Eqgs.

{9.11) and (9.9). We find
7 3
and a8, = (i) = L
A

__pL?
Ja T T3ED dx SEI

EXAMPLE 9.01
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EXAMPLE 9.02 gin simply supported prismatic beam AB carries a uniformly distributed
load w per unit length (Fig. 9.12). Determine the equation of the elastic

curve and the maximum deflection of the beam.

Fig. 9.12

Drawing the free-body diagram of the portion AD of the beam
(Fig. 9.13) and taking moments about D, we find that

equation by the constant EI, we write

oV/ ‘
F —]V d% 1 1 .
A_’l EI —i = - ;w.rz + ;u‘-LJ; (9.13)

dx

M = fwlLx — fuwx® (9.12)
] l l‘l I ]r Substituting for M into Eq. (9.4) and multiplying both members of this
[ iY

1
R, = uwl
Fi; ; 13 Integrating twice in x, we have
dy 1 i )
I—=——w’+—uwl®+C (9.14)
dx 6" Pl !
1 1 .
Ely= - Euw“ + EwLﬁ + Cpx + Oy (9.15)
y Observing that y = 0 at both ends of the beam (Fig. 9.14), we first let
x=0and y = 0in Eq. (9.15) and obtain C; = 0. We then make x = L
[+ =0.y =1 [r=L.y=0] andy = 0'in the same equation and write
L} 4q
B
——t 0= - el + ful' + CL
A
| L | Carrying the values of C; and Cj back into Eq. (9.15), we obtain the
Fig. 9.14 equation of the elastic curve:
Ely = — grun® + gpwla® — fuwl®
or
y = 94EI (—x' + 20" — L) (9.16)
y Substituting into Eq. (9.14) the value obtained for €y, we check

that the slope of the beam is zero for ¥ = L/2 and that the elastic curve
has a minimum at the midpoint C of the beam (Fig. 9.15). Letting x =
L/2 in Eq. (9.16), we have

w L? ? Swl?
= TR e
Yo 2415{( 16 2) 384E1

The maximum deflection or, more precisely, the maximum absolute value
of the deflection, is thus

Swl?
[t/ | max =
384ET
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In each of the two examples considered so far, only one free body diagram was
required to determine the bending moment in the beam. As a result, a single function of x
was used to represent M throughout the beam. This, however, is not generally the case.
Concentrated loads, reactions at supports, or discontinuities in a distributed load will make
it necessary to divide the beam into several portions, and to represent the bending moment
by a different function M(x) in each of these portions of beam. Each of the functions M(x)
will then lead to a different expression for the slope 0(x) and for the deflection y(x). Since
each of the expressions obtained for the deflection must contain two constants of
integration, a large number of constants will have to be determined.

As you will see in the next example, the required additional boundary conditions can
be obtained by observing that, while the shear and bending moment can be discontinuous at
several points in a beam, the deflection and the slope of the beam cannot be discontinuous
at any point.

EXAMPLE 9.03

For the prismatic beam and the loading shown (Fig. 9.16), determine the
slope and deflection at point D,

We must divide the beam into two portions, AD and DB, and deter-
mine the fmction ylx) which defines the elastic curve for each of these |

portions. ¥

1. Frem A te D (x < [/4). We draw the free-body diagram of j,l\_
a portion of beam AE of length x < L/4 (Fig. 9.17). Taking moments b
about E, we have

a4

[==]

i

Fig. 9.15

My = (9.17) '\

o, recalling Eq. (9.4),
d?
'):,1 = EFJ:
dr® 4

where glfrfl is the function which defines the elastic curve for portion AD
of the beam. Integrating in x, we write

El

(9.18)

d 3 .
EI6, = El 2= 2p + ¢,

9.19)
de 8 (

1
Ely, = gPx' + Cp + Cy (9.20)

2. From Do B [x = L/4]. 'We now draw the free-body diagram
of a portion of beam AE of length x > L/4 (Fig. 9.18) and write

3F L
M,=—« —P(x ——)
- 4 4

(9.21)
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or, recalling Eq. (9.4} and rearranging terms,

Fl /] Lo + Lpr, (9.22)
= - — + — a i ]
it 4 4

where yz(x) is the function which defines the elastic curve for postion DB
of the beam. Integrating in x, we write

Elﬂn—EI—fbjg——lPx2+lPLx+C (9.23)

T & T8 4 : '
Lo, 1.

Efygz—EPr +§PL1' + Cax + Oy (0.24)

Determination of the Constants of Integrafion. The conditions
that must be satisfied by the constants of integration have been summarized
in Fig. 9.19. At the support A, where the deflection is defined by Eq. (9.20),
we must have x = 0 and ¢, = 0. At the support B, where the deflection is
defined by Eq. (9.24), we must have x = L and y> = 0. Also, the fact that
there can be no sudden change in deflection or in s]fﬁpe at point I requires

that iy, = 4 and 8, = 8, when x = L/4. We have therefore:
= 0.y = 0], Eq. (9.20): 0=0C 9.25
Fig. 9.19 [x = 0.4 = 0], Eq.(9.20) : (9.25)
[t = Ly = 0]. Bq. (9.24): 0= I—LEPLS + CaL + Gy (9.26)

[x = L/4, 6, = 8c). Eqs. (9.19) and (9.23):

3 a3 T e
— PP+ C,= —FL + C 9.27
128 7o s (9.27)

[x = L4, 4 = y,). Eqs. (9.20) and (9.24):

PL? L 11pL? L
— + == +C—+C 9.25
512 47 1536 ®4 * (9.25)

Solving these equations simultanecusly, we find

TPLE 11PLE PI?
Ca=0C3=— =—
1257 T A 128 © 47 384

C]_=_

Substituting for €} and C; into Eqs. (9.19) and (9.20), we write that for

x = L4,
3, TPLE
= — E— .29)
Els, SPI 128 (9.29]
1 TPL?
Ely, = —=Px* — 9.30)
yr= g = o {

Letting x = L/4 in each of these equations, we find that the slope and
deflection at point I are, respectively,
% SPL*

]

=

We note that, since 8, = 0, the deflection at I is not the maximum
deflection of the beam.
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o
A B L
[ C
i =
| L |— 7 —=
[J
A B r
C
¥ Ba T]l;
! L ! a—
y
D
A | ) M
m—
FR,=P7
L}
[V=Il_rl|=l]] [\_=r__rl.=|:|]
—
& B ===
L I-_ﬂ_?|
¥
r.'l'.nn:
.--—:1‘—_—'_—__|EL_?=—-_,_F
A— ————
(i

SAMPLE PROBLEM 9.1

The overhanging steel beam ABC carries a concentrated load P at end C. For
portion AB of the beam, () derive the equation of the elastic curve, () deter-
mine the madmum deflection, (¢} evaluate g, for the following data:

W14 x 65 1= T722in* E =29 % 10°psi
P=>50kips L=15ft=180in. a=4ft=48in.

SOLUTION

Free-Body Diagrams. Reactions: Ry = Pa/L | Bg= P(1 + a/L) 7
Using the free-body diagram of the portion of beam AD of length x, we find

M=-PLy (0<=x<L)

L

Differential Equation of the Elastic Curve. We use Eq. (8.4) and write

dy e

EI dgE = EI

Noting that the flexural rigidity ET is constant, we integrate twice and find
riy 1 _a , L
Efa— —EPII + C; (1)
1_a .
Ely = —EPEH + Cpx + Oy (2)

Determination of Constants.  For the boundary conditions shown, we
have

[x =0,y =0l From Eq. (2), we find Cy=0
[x =L y= 0 Again using Eq. (2), we write

1 1
EI(0) = — EP%L"’ +CGL  C= +ohal

a. Equation of the Elastic Curve. Substituting for C; and C; into Eqs.
(1) and (2], we have

dy 1 _a 1 dy  PaL x
— = — —p—yt —, —_ = — — — {3
El—-= = JPra' + Pal. i [L S(L) ] (3)
__lpaa 1 _PaLifx _ (x}']
Ely=—gPpx *ghalx Y= 6EI [L (I) | ©

b. Maximum Deflection in Portion AB. The maximum deflection
1emax OCCuTs at point E where the slope of the elastic curve is zero. Setting
dyfdx = 0 in Eq. (3), we determine the abscissa x of point E:

FaL |: (IM)E] L .
0= —=l1 = 3| = X, = ——== 057TL
L V3
We substitute 1./L = 0.577 into Eq. (4) and have
Pal® ~ % Pal?®
Yoas = gz ((057T) = (057T)"]  yomws = 0.0642—
c. Evaluation of y,... TFor the data given, the value of gy, is
_ (50 Tips)(48 in.)(150 in.
T (20 % 10° psi)(722 in")

Ymax = 0. Ymax = 0.238 in.
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s SAMPLE PROBLEM 9.2

b= e min T
i = i SI0

11]1] l_] [1l|' B For the beam and loading shown, determine () the equation of the elastic

Al | . curve, ik the slope at end A, (c) the maximum

I T
I I

SOLUTION

Differential Equation of the Elastic Curve.
dy

deflection.

From Eq. (9.32),

El—= —w(x) = —uy sin%r (1)

dx®

Integrate Eq. (1) twice:
3

dy

L .
El—% = V= +wpy—cos——=+ G, (2)
T L

drs
d?y

L? .
El—5 =M= +w;sin =+ Cyx + C, (3)
2L

dx?
Bonndary Conditions:

[x =0 M= 0] From Eq. (3), we find

C[.\:D‘

y [x =L M= 0] Again using Eq. (3), we write

a

=0 M=0] k=L M=0]

=0, y=10] [e=L,y=10]

A — % Thus:
s 2

L
0=w|3_251111T+C]_L C]_=D
m

—— — d i LE .
EI—".:= +wg—25'in?r—x (4)
T L

dx

Integrate Eq. (4] twice:
ey I3

wx
EI—=EIf= —w.;.ﬁcusz

dx

4

+ Ca (5)

L .
Ely = —wp— sin = + Cax + C, (6)
T

L

Bonndary Conditions:

[x =0y =0 Using Eq. (6), we find C;=0
[x=L.yg= 0l Again using Eq. (6, we find C; = 0

¥ a. Equation of Elastic Curve

s Hma

A B b. Slope at End A. For x = 0, we have
AL =% 3

) ! L2 .

¢. Maximum Deflection. For x = 1L

L-i.
4

T
ELy_ .. = —wy,—sin —
o

L*
Ely = —wy—gsin—
w

L
Elg, = _EUﬁ_GCDSG b, =
W

T
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= SAMPLE PROBLEM 9.3

- v 1] I l l 1 1 l g For the uniform beam AB, (a) determine the reaction at A, (b) derive the
e equation of the elastic curve, (¢) determine the sloye at A. (Note that the
beam is statically indeterminate to the first degree.)

| L |

(eo2) o SOLUTION
T i ke
i‘ Tx*|) Wo- Bending Moment. Using the free body shown, we wiite
y o
gl 11)“ +ISM,=0: Ry —%(%)%— M=0 M=Bux- "”ﬁ":
D
. !'-, Differential Equation of the Elastic Curve. We use Eq. (8.4) and write
Ra d% 2
-- SR
Noting that the flexural ligld.lt}' EI is constant, we integrate twice and find
dy 1 7 u.c.r )
El—=EI8= _Ra® - ~2-+C, (1
Ll s w.;.r /s
Ely = ER_,.J.' 0L + Cx + Cs (2)
Boundary Condifions. The three boundary conditions that must be
satisfied are shown on the sletch
! [t=0,y=0]: Ca=0 (3)
. rd
{i :,{ rH:} [+=L6=0] %RALE -4 vc=0 (4)
[x =10, y=10] : gl
A S —_—_‘I E . [x=Ly=0] ‘,__%H_._J'.fI - "ﬁ; RIS = (5)
= S -
— a. Reachion at A, Multiplying Eq. (4] by L, subtracting Eq. (5) member
by member from the equation obtained, and noting that Cs = 0, we have
TR, — Luwpli=10 Ry = el 1

We note that the reaction is independent of E and I. Substituting R, = gL
into Eq. (4], we have
Hiwel)L* — grwel® + C1 =0 €= —dpuypL?
b. Equation of the Elastic Curve. Substituting for Ry, €y, and C;
into Eq. (2], we have

171 u;.;:ra ( 3)
Ely = ﬁ(m"””L) 1200 \120%°F )

_ Yo 84 oapo.a 4
= —x" + 2L%" — L%
B, Y= ToomiL' ’ )
c. Slope at A, We differentiate the above equation with respect to x:
d’J Wy
— Sct + 6L%T — L*
=@ 10EIL' " * )
) wc.L:’ u'nf_-a
Making x = 0, we h 8, =- g, =
¥ = 1 we e AT T 120EI A~ 120EI
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USING SINGULARITY FUNCTIONS TO DETERMINE
THE SLOPE AND DEFLECTION OF A BEAM

Let us consider again the beam and loading of P
Example 9.03 (Fig. 9.16) and draw the free-body | LA - |
diagram of that beam (Fig. 9.27). Using the | o
appropriate singularity function, to represent the Al B
contribution to the shear of the concentrated load A p i
P, we write:

3P Fig. 9.16 [repeated)
V(x) = L P<.r — .'jL)O

Integrating in x and recalling that in the absence /4
of any concentrated couple, the expression
obtained for the bending moment will not contain _
any constant term, we have: ' D

>
o R
M(x) = —x = P(x = 4L) iP TP
Fig. 9.27 Free-body diagram for
beam of Fig. ¢.16.

(fzy 3P |
e = Z:\ — P<.1 — 1L->

and, integrating in x,

dy 3 , 1 s
E16 = El—-= o P = Pl = LY + C, y
_ 1 _3 ]' . 1 3 T al .'I Uy ”I L Loy of
Ely = gP.\ — EP(.\ — 1L> + Cix + Cy l_ R .

e 3 F

The constants C; and C, can be determined from . _ .

. . . Fig. 9.28 Boundary conditions for
the boundary conditions shown in Fig. 9.28. beam of Fig. 9.16.
Lettingx =0,y =0in Eq. of y above , we have:

1 .
0=10-— FP<” — L)+ 0+ C,
D
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which reduces to C, = 0, since any bracket containing a negative quantity is equal to zero.

Letting now x =L, y =0, and C, = 0 in the same equation of y above, we write:

1 1 .
0=—PL> — —PEL)’ + C\|L
8 6 GL) !
Since the quantity between brackets is positive, the brackets can be replaced by ordinary
parentheses. Solving for C1, we have:
7PL?
128

.-’l -
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EXAMPLE 9.06

For the beam and loading shown (Fig, 9.29¢) and using singularity func-
tions, (a) express the slope and deflection as functions of the distance x
from the support at A, (b) determine the deflection at the midpoint D. Use

P=12kN

E =200 CPaand I = 687 % 10 % m o
wy = 1.5 kN/m
(a) We note that the beam is loaded and supported in the same My=144kN.m

manner as the beam of Example 5.05. Referring to that example, we recall cy D
that the given distributed loading was replaced by the two equivalent Al (== B

A o
open-ended loadings shown in Fig. 9.29b and that the following expres-
sions were obtained for the shear and bending moment: ‘ Lam

| .
Vix) = =150 — 0.6)' + 1.5(x — 1.8)' + 2.6 — 1.2(x — 0.6)" 06m 0fm  10m
M(x) = —0.75(x — 0.6f" + 0.75(x — 1.8)* ! 36m
+ 26x — 1.2(r — 0.6)' — L44{x — 2.6)" »
@
Integrating the last expression twice, we obtain
- _ _ 3 . ] ,
EI§ = —0.25(x 0.62 + 0.25(x — 1.8} 1 .
+ 137 — 06(c — 06 — 144{x — 26)' + C;  (9.48) P=12kN  My=L44kN.m
Ely = —0.0625(c — 0.6)" + 0.0625(x — 1.8)* + 0.4333:° i, wp = 1.5 kN/m
— 0.2 — 0.6) —0.72{x — 26 + Cix + C2 (9.49) "l l l l l U{l l l
C
The constants €y and Cz can be determined from the boundary A |—sE B x
conditions shown in Fig. 9.30. Letting x = 0, y = 0 in Eq. (9.49) and A DI TIT T T IM
noting that all the brackets contain negative quantities and. therefore, are ~——1.8m
equal to zero, we conclude that Cy = 0. Letting now x = 3.6, y = 0, and _ \ B
Cy = 0in Eq. (9.49], we write 26m
A, =26kN —wy = — L5 kN/m

W

0= —0.06253.0' + 0.0625(1.8)"

+0.4333(3.6)° — 0.2(3.0) — 0.72(1.OY + C4(3.6) + 0 ®)

Fig. 9.29

Since all the quantities between brackets are positive, the brackets can be
replaced by ordinary parentheses. Solving for Cy, we find €, = —2.692.

iy
[x=0,y=0] [x=238 y=0]
A = B x
= =
Fig. 9.30

(b} Substituting for Cy and Cy into Eq. (9.49) and making x = xp =

1.8 m, we find that the deflection at point D is defined by the relation
Elyp = —0.0625(1.2)" + 0.0625(0)"

+ 0.4333(1.8)° — 0.21.2)" — 0.72(—-0.8 — 2.692(1.8)
The last bracket contains a negative quantity and, therefore, is equal to
zero. All the other brackets contain positive quantities and can be replaced
by ordinary parentheses. We have
Elyp = —0.0625(1.2) + 0.0625(0)*

+ 0.4333(1.8" — 0.2(1.2)" — 0 — 2.692(1.8) = —2.794

Recalling the given numerical values of E and I, we write

(200 GPa)(6.57 ¥ 10 " m*)yp = —2.794kN * m
yp = —1364 X 10 m = =203 mm
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